Brain Tumor Segmentation (BraTS) Challenge Short Paper: Improving Three-Dimensional Brain Tumor Segmentation Using SegResnet and Hybrid Boundary-Dice Loss

被引:9
作者
Hsu, Cheyu [1 ]
Chang, Chunhao [2 ,3 ]
Chen, Tom Weiwu [1 ]
Tsai, Hsinhan [4 ]
Ma, Shihchieh [2 ,3 ]
Wang, Weichung [2 ,3 ]
机构
[1] Natl Taiwan Univ Hosp, Div Med Oncol, Dept Oncol, Taipei, Taiwan
[2] Natl Taiwan Univ, MeDA Lab, Taipei, Taiwan
[3] Natl Taiwan Univ, Inst Appl Math Sci, Taipei, Taiwan
[4] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II | 2022年 / 12963卷
关键词
Brain tumor; MRI scans segmentation; SegResnet; Dice loss; Boundary loss;
D O I
10.1007/978-3-031-09002-8_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The advancements in biotechnology and healthcare have led to the increasing use of artificial intelligence in medical imaging analysis. Recently, image recognition technology such as deep learning has become an important tool used for the detection and diagnosis of tumors. As labeling and annotation of tumors are time-consuming, it is necessary to design an approach that can automatically and accurately label tumors. Training a convolutional neural network (CNN) is possible to automatically interpret medical images more accurately, thereby assisting physicians in their diagnosis. In this paper, we describe an automated segmentation model by combining SegResnet and different loss functions to segment brain tumors in multimodal magnetic resonance imaging (MRI) scans and accelerate the tumor annotation process. By adding refinements to our training process, including region-based training, postprocessing, we were able to achieve Dice scores of 0.8159, 0.8734, and 0.9193, and Hausdorff Distance (95th percentile) of 20.02, 7.99, and 4.12 for the enhancing tumor (ET), whole tumor (WT), and tumor core (TC) respectively on the validation dataset.
引用
收藏
页码:334 / 344
页数:11
相关论文
共 12 条
[1]  
Baid U, 2021, Arxiv, DOI [arXiv:2107.02314, 10.48550/arXiv:2107.02314]
[2]  
Bakas S., 2017, NAT SCI DATA, V4, DOI DOI 10.7937/K9/TCIA.2017.KLXWJJ1Q
[3]  
Bakas S., 2017, The Cancer Imaging Archive, V286, DOI DOI 10.7937/K9/TCIA.2017.GJQ7R0EF
[4]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[5]   Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians [J].
Grover, Vijay P. B. ;
Tognarelli, Joshua M. ;
Crossey, Mary M. E. ;
Cox, I. Jane ;
Taylor-Robinson, Simon D. ;
McPhail, Mark J. W. .
JOURNAL OF CLINICAL AND EXPERIMENTAL HEPATOLOGY, 2015, 5 (03) :246-255
[6]   Cancer survival data emphasise importance of early diagnosis [J].
Hawkes, Nigel .
BMJ-BRITISH MEDICAL JOURNAL, 2019, 364 :l408
[7]  
Isensee F, 2019, Arxiv, DOI arXiv:1809.10483
[8]   The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [J].
Menze, Bjoern H. ;
Jakab, Andras ;
Bauer, Stefan ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan ;
Kirby, Justin ;
Burren, Yuliya ;
Porz, Nicole ;
Slotboom, Johannes ;
Wiest, Roland ;
Lanczi, Levente ;
Gerstner, Elizabeth ;
Weber, Marc-Andre ;
Arbel, Tal ;
Avants, Brian B. ;
Ayache, Nicholas ;
Buendia, Patricia ;
Collins, D. Louis ;
Cordier, Nicolas ;
Corso, Jason J. ;
Criminisi, Antonio ;
Das, Tilak ;
Delingette, Herve ;
Demiralp, Cagatay ;
Durst, Christopher R. ;
Dojat, Michel ;
Doyle, Senan ;
Festa, Joana ;
Forbes, Florence ;
Geremia, Ezequiel ;
Glocker, Ben ;
Golland, Polina ;
Guo, Xiaotao ;
Hamamci, Andac ;
Iftekharuddin, Khan M. ;
Jena, Raj ;
John, Nigel M. ;
Konukoglu, Ender ;
Lashkari, Danial ;
Mariz, Jose Antonio ;
Meier, Raphael ;
Pereira, Sergio ;
Precup, Doina ;
Price, Stephen J. ;
Raviv, Tammy Riklin ;
Reza, Syed M. S. ;
Ryan, Michael ;
Sarikaya, Duygu ;
Schwartz, Lawrence ;
Shin, Hoo-Chang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :1993-2024
[9]  
Myronenko A, 2018, Arxiv, DOI arXiv:1810.11654
[10]   Automatic Brain Tumor Segmentation Using Cascaded Anisotropic Convolutional Neural Networks [J].
Wang, Guotai ;
Li, Wenqi ;
Ourselin, Sebastien ;
Vercauteren, Tom .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 :178-190