Surface-enhanced Raman scattering for the rapid discrimination of bacteria

被引:198
|
作者
Jarvis, RM
Brooker, A
Goodacre, R
机构
[1] Univ Manchester, Sch Chem, Manchester M60 1QD, Lancs, England
[2] Renishaw Plc, Wotton Under Edge GL12 7DW, Glos, England
关键词
D O I
10.1039/b506413a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Raman spectroscopy is attracting interest for the rapid identification of bacteria and fungi and is now becoming accepted as a potentially powerful whole-organism fingerprinting technique. However, the Raman effect is so weak that collection times are lengthy, and this insensitivity means that bacteria must be cultured to gain enough biomass, which therefore limits its usefulness in clinical laboratories where high-throughput analyses are needed. The Raman effect can fortunately be greatly enhanced ( by some 10(3)-10(6)-fold) if the molecules are attached to, or microscopically close to, a suitably roughened surface; a technique known as surface-enhanced Raman scattering (SERS). In this study we investigated SERS, employing an aggregated silver colloid substrate, for the analysis of a closely related group of bacteria belonging to the genus Bacillus. Each spectrum took only 20 s to collect and highly reproducible data were generated. The multivariate statistical technique of principal components-discriminant function analysis (PC-DFA) was used to group these bacteria based on their SERS fingerprints. The resultant ordination plots showed that the SERS spectra were highly discriminatory and gave accurate identification at the strain level. In addition, Bacillus species also undergo sporulation, and we demonstrate that SERS peaks that could be attributed to the dipicolinic acid biomarker, could be readily generated from Bacillus spores.
引用
收藏
页码:281 / 292
页数:12
相关论文
共 50 条
  • [22] Rapid Detection of Bacteria from Blood with Surface-Enhanced Raman Spectroscopy
    Boardman, Anna K.
    Wong, Winnie S.
    Premasiri, W. Ranjith
    Ziegler, Lawrence D.
    Lee, Jean C.
    Miljkovic, Milos
    Klapperich, Catherine M.
    Sharon, Andre
    Sauer-Budge, Alexis F.
    ANALYTICAL CHEMISTRY, 2016, 88 (16) : 8026 - 8035
  • [23] Surface-enhanced Raman spectroscopy using uncoated gold nanoparticles for bacteria discrimination
    Akanny, Elie
    Bonhomme, Anne
    Commun, Carine
    Doleans-Jordheim, Anne
    Farre, Carole
    Bessueille, Francois
    Bourgeois, Sandrine
    Bordes, Claire
    JOURNAL OF RAMAN SPECTROSCOPY, 2020, 51 (04) : 619 - 629
  • [24] Rapid and sensitive detection of rotavirus by surface-enhanced Raman scattering immunochromatography
    Zhang, Yuxue
    Wu, Gang
    Wei, Jiata
    Ding, Yanlei
    Wei, Yingming
    Liu, Qiqi
    Chen, Hailan
    MICROCHIMICA ACTA, 2021, 188 (01)
  • [25] Rapid and sensitive detection of rotavirus by surface-enhanced Raman scattering immunochromatography
    Yuxue Zhang
    Gang Wu
    Jiata Wei
    Yanlei Ding
    Yingming Wei
    Qiqi Liu
    Hailan Chen
    Microchimica Acta, 2021, 188
  • [26] A Review on Surface-Enhanced Raman Scattering
    Pilot, Roberto
    Signorini, Raffaella
    Durante, Christian
    Orian, Laura
    Bhamidipati, Manjari
    Fabris, Laura
    BIOSENSORS-BASEL, 2019, 9 (02):
  • [27] Surface-enhanced Raman scattering holography
    Matz Liebel
    Nicolas Pazos-Perez
    Niek F. van Hulst
    Ramon A. Alvarez-Puebla
    Nature Nanotechnology, 2020, 15 : 1005 - 1011
  • [28] SURFACE-ENHANCED RAMAN-SCATTERING
    BOERIO, FJ
    THIN SOLID FILMS, 1989, 181 : 423 - 433
  • [29] Rapid detection of chlorpyriphos residue in rice by surface-enhanced Raman scattering
    Huang, Shuanggen
    Hu, Jianping
    Guo, Ping
    Liu, Muhua
    Wu, Ruimei
    ANALYTICAL METHODS, 2015, 7 (10) : 4334 - 4339
  • [30] Surface-enhanced Raman scattering and biophysics
    Kneipp, K
    Kneipp, H
    Itzkan, I
    Dasari, RR
    Feld, MS
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (18) : R597 - R624