NUMERICAL APPROXIMATION OF THE CAHN-HILLIARD EQUATION WITH MEMORY EFFECTS IN THE DYNAMICS OF PHASE SEPARATION

被引:0
|
作者
Lecoq, Nicolas [1 ]
Zapolsky, Helena [1 ]
Galenko, Peter [2 ]
机构
[1] Univ Rouen, Grp Phys Mat, UMR CNRS 6634, F-76801 St Etienne, France
[2] Deutsch Zentrum Luft & Raumfahrt DLR, German Aerosp, Inst Mat Phys Weltraum, D-51170 Cologne, Germany
关键词
Cahn-Hilliard equation; Spinodal decomposition; Memory effects; Numerical analysis; MODEL; RELAXATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the modified Cahn-Hilliard equation for phase separation suggested to account for spinodal decomposition in deeply supercooled binary alloy systems or glasses. This equation contains, as additional term, the second-order time derivative of the concentration multiplied by a positive coefficient tau(d) (time for relaxation). We consider a numerical approximation scheme based on Fourier spectral method and perform numerical analysis of the scheme. We present results of numerical simulations for three spatial dimensions, and examine the stability and convergence of the scheme.
引用
收藏
页码:953 / 962
页数:10
相关论文
共 50 条
  • [1] Phase Separation in the Advective Cahn-Hilliard Equation
    Feng, Yu
    Feng, Yuanyuan
    Iyer, Gautam
    Thiffeault, Jean-Luc
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (06) : 2821 - 2845
  • [2] NUMERICAL-STUDIES OF THE CAHN-HILLIARD EQUATION FOR PHASE-SEPARATION
    ELLIOTT, CM
    FRENCH, DA
    IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 38 (02) : 97 - 128
  • [3] Numerical Approximation of the Space Fractional Cahn-Hilliard Equation
    Weng, Zhifeng
    Huang, Langyang
    Wu, Rong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [4] Local Dynamics of Cahn-Hilliard Equation
    Kashchenko, S. A.
    Plyshevskaya, S. P.
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2019, 22 (01): : 93 - 97
  • [5] Dynamics of the viscous Cahn-Hilliard equation
    Carvalho, A. N.
    Dlotko, Tomasz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 703 - 725
  • [6] THE DYNAMICS OF NUCLEATION FOR THE CAHN-HILLIARD EQUATION
    BATES, PW
    FIFE, PC
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (04) : 990 - 1008
  • [7] A mathematical model for phase separation: A generalized Cahn-Hilliard equation
    Berti, A.
    Bochicchio, I.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (10) : 1193 - 1201
  • [8] Numerical approximation of the fractional Cahn-Hilliard equation by operator splitting method
    Shuying Zhai
    Longyuan Wu
    Jingying Wang
    Zhifeng Weng
    Numerical Algorithms, 2020, 84 : 1155 - 1178
  • [9] Numerical approximation of the fractional Cahn-Hilliard equation by operator splitting method
    Zhai, Shuying
    Wu, Longyuan
    Wang, Jingying
    Weng, Zhifeng
    NUMERICAL ALGORITHMS, 2020, 84 (03) : 1155 - 1178
  • [10] ANALYSIS AND APPROXIMATION OF A FRACTIONAL CAHN-HILLIARD EQUATION
    Ainsworth, Mark
    Mao, Zhiping
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) : 1689 - 1718