Self-Assembly Based Plasmonic Arrays Tuned by Atomic Layer Deposition for Extreme Visible Light Absorption

被引:115
作者
Haegglund, Carl [1 ]
Zeltzer, Gabriel [2 ]
Ruiz, Ricardo [2 ]
Thomann, Isabell [3 ]
Lee, Han-Bo-Ram [1 ]
Brongersma, Mark L. [3 ]
Bent, Stacey F. [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Hitachi Global Storage Technol, San Jose, CA 95138 USA
[3] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA
关键词
Block copolymer lithography; atomic layer deposition; two-dimensional metamaterials; optical impedance matching; perfect absorbers; oscillator strength; CONVERSION; THICKNESS;
D O I
10.1021/nl401641v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 x 10(7) cm1 in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.
引用
收藏
页码:3352 / 3357
页数:6
相关论文
共 33 条
[1]   Charge transfer on the nanoscale: Current status [J].
Adams, DM ;
Brus, L ;
Chidsey, CED ;
Creager, S ;
Creutz, C ;
Kagan, CR ;
Kamat, PV ;
Lieberman, M ;
Lindsay, S ;
Marcus, RA ;
Metzger, RM ;
Michel-Beyerle, ME ;
Miller, JR ;
Newton, MD ;
Rolison, DR ;
Sankey, O ;
Schanze, KS ;
Yardley, J ;
Zhu, XY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (28) :6668-6697
[2]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[3]   Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers [J].
Aydin, Koray ;
Ferry, Vivian E. ;
Briggs, Ryan M. ;
Atwater, Harry A. .
NATURE COMMUNICATIONS, 2011, 2
[4]   Metallic subwavelengtb structures for a broadband infrared absorption control [J].
Biener, Gabriel ;
Niv, Avi ;
Kleiner, Vladimir ;
Hasman, Erez .
OPTICS LETTERS, 2007, 32 (08) :994-996
[5]  
Bohren C.F., 1998, ABSORPTION SCATTERIN, V2, P544
[6]   Impact of Out-of-Plane Translational Order in Block Copolymer Lithography [J].
Bosworth, Joan K. ;
Dobisz, Elizabeth A. ;
Hellwig, Olav ;
Ruiz, Ricardo .
MACROMOLECULES, 2011, 44 (23) :9196-9204
[7]   ZnO grown by atomic layer deposition: A material for transparent electronics and organic heterojunctions [J].
Guziewicz, E. ;
Godlewski, M. ;
Krajewski, T. ;
Wachnicki, L. ;
Szczepanik, A. ;
Kopalko, K. ;
Wojcik-Glodowska, A. ;
Przezdziecka, E. ;
Paszkowicz, W. ;
Lusakowska, E. ;
Kruszewski, P. ;
Huby, N. ;
Tallarida, G. ;
Ferrari, S. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (12)
[8]   Plasmonic Near-Field Absorbers for Ultrathin Solar Cells [J].
Haegglund, Carl ;
Apell, S. Peter .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (10) :1275-1285
[9]   Resource efficient plasmon-based 2D-photovoltaics with reflective support [J].
Hagglund, Carl ;
Apell, S. Peter .
OPTICS EXPRESS, 2010, 18 (19) :A343-A356
[10]   Maximized Optical Absorption in Ultrathin Films and Its Application to Plasmon-Based Two-Dimensional Photovoltaics [J].
Hagglund, Carl ;
Apell, S. Peter ;
Kasemo, Bengt .
NANO LETTERS, 2010, 10 (08) :3135-3141