A Numerical Method for Solving Boundary and Interior Layers Dominated Parabolic Problems with Discontinuous Convection Coefficient and Source Terms

被引:87
作者
Chandru, M. [1 ,2 ]
Prabha, T. [1 ]
Das, P. [3 ]
Shanthi, V. [1 ]
机构
[1] Natl Inst Technol, Dept Math, Tiruchirappalli 620015, Tamil Nadu, India
[2] Vignans Univ, Dept Math, Vadlamudi, Andhra Pradesh, India
[3] Indian Inst Technol Patna, Dept Math, Patna 801103, Bihar, India
关键词
Boundary and interior layers; Parabolic partial differential equation; Initial boundary value problem; Time dependent problem; Singular perturbation; Reaction-convection-diffusion; Two-parameter problem; Parameter uniform numerical method; 35G05; 35G16; 35K20; 35K51; 65M06; 65M50; 65M12; DIFFERENTIAL-EQUATION; DIFFUSION PROBLEMS; SCHEME;
D O I
10.1007/s12591-017-0385-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a parameter uniform numerical method is developed for a two-parameter singularly perturbed parabolic partial differential equation with discontinuous convection coefficient and source term. The presence of perturbation parameter and the discontinuity in the convection coefficient and source term lead to the boundary and interior layers in the solution. On the spatial domain, an adaptive mesh is introduced before discretizing the continuous problem. The present method observes a uniform convergence in maximum norm which is almost first-order in space and time irrespective of the relation between convection and diffusion parameters. Numerical experiment is carried out to validate the present scheme.
引用
收藏
页码:91 / 112
页数:22
相关论文
共 32 条
[1]  
[Anonymous], 1968, Translation of Mathematical Monographs
[2]   A parameter robust higher order numerical method for singularly perturbed two parameter problems with non-smooth data [J].
Chandru, M. ;
Prabha, T. ;
Shanthi, V. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 309 :11-27
[3]   An efficient numerical scheme for 1D parabolic singularly perturbed problems with an interior and boundary layers [J].
Clavero, C. ;
Gracia, J. L. ;
Shishkin, G. I. ;
Shishkina, L. P. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 318 :634-645
[4]  
Das P., 2013, AUST J MATH ANAL APP, V10, P1
[5]   Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters [J].
Das, Pratibhamoy ;
Mehrmann, Volker .
BIT NUMERICAL MATHEMATICS, 2016, 56 (01) :51-76
[7]   Adaptive mesh generation for singularly perturbed fourth-order ordinary differential equations [J].
Das, Pratibhamoy ;
Natesan, Srinivasan .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (03) :562-578
[8]  
Das P, 2013, CMES-COMP MODEL ENG, V90, P463
[9]   HIGHER-ORDER PARAMETER UNIFORM CONVERGENT SCHEMES FOR ROBIN TYPE REACTION-DIFFUSION PROBLEMS USING ADAPTIVELY GENERATED GRID [J].
Das, Pratibhamoy ;
Natesan, Srinivasan .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2012, 9 (04)
[10]  
Doolan E.P., 1980, UNIFORM NUMERICAL ME