Common eigenvalue problem and periodic Schrodinger operators

被引:0
作者
Mikhailets, VA [1 ]
Sobolev, AV
机构
[1] Univ Sussex, Ctr Math Anal & Its Applicat, Brighton BN1 9QH, E Sussex, England
[2] Ukrainian Acad Sci, Inst Math, UA-252601 Kiev 4, Ukraine
基金
英国工程与自然科学研究理事会;
关键词
periodic Schrodinger operator; absolutely continuous spectrum; local point interactions; self-adjoint extensions; common eigenvalues;
D O I
10.1006/jfan.1999.3406
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U be a subset of the family of all self-adjoint extensions of a symmetric operator A(0) with equal deficiency indices in a Hilbert space. Assuming that A(0) has a purely residual spectrum we describe the set of eigenvalues common to all self-adjoint extensions from U. This abstract result is used to show that the one-dimensional periodic Schrodinger operator with local point interactions is absolutely continuous. (C) 1999 Academic Press.
引用
收藏
页码:150 / 172
页数:23
相关论文
共 18 条
[1]  
Albeverio S., 1988, Solvable Models in Quantum Mechanics
[2]  
Alonso A., 1980, J. Operator Theory, V4, P251
[3]  
[Anonymous], 2012, MG KREINS LECT ENTIR
[4]  
Azizov T. Ya., 1989, LINEAR OPERATORS SPA
[5]  
Birman M. Sh., 1987, SPECTRAL THEORY SELF
[6]  
BUSCHMANN D, 1995, J REINE ANGEW MATH, V467, P169
[7]   Abstract symmetric boundary conditions [J].
Calkin, J. W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1939, 45 (1-3) :369-442
[8]  
Dunford N, 1963, LINEAR OPERATORS, VII
[9]  
GORBACHUK VI, 1990, MATH ITS APPL SOVIET, V48
[10]  
Kato T., 1966, Perturbation Theory for Linear Operators., DOI [10.1007/978-3-662-12678-3, DOI 10.1007/978-3-662-12678-3]