The phase of the Riemann zeta function

被引:2
作者
Khare, A
机构
[1] Institute of Physics, Bhubaneswar 751 005, Sachivalaya Marg
来源
PRAMANA-JOURNAL OF PHYSICS | 1997年 / 48卷 / 02期
关键词
Riemann zeta function; Gutzwiller trace formula;
D O I
10.1007/BF02845661
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We, offer an alternative interpretation of the Riemann zeta function zeta(s) as a scattering amplitude and its nontrivial zeros as the resonances in the scattering amplitude. We also look at several different facets of the phase of the zeta function. For example, we show that the smooth part of the zeta function along the line of the zeros is related to the quantum density of states of an inverted oscillator. On the other hand, for Rs > 1/2, we show that the memory of the zeros fades only gradually through a Lorentzian smoothing of the delta functions. The corresponding trace formula for Rs much greater than 1 is shown to be of the same form as generated by a one-dimensional harmonic oscillator in one direction along with an inverted oscillator in the transverse direction. Quite remarkably for this simple model, the Gutzwiller trace formula can be obtained analytically and is found to agree with the quantum result.
引用
收藏
页码:537 / 553
页数:17
相关论文
共 32 条
[1]   QUANTUM-MECHANICS OF THE INVERTED OSCILLATOR POTENTIAL [J].
BARTON, G .
ANNALS OF PHYSICS, 1986, 166 (02) :322-363
[2]   A RULE FOR QUANTIZING CHAOS [J].
BERRY, MV ;
KEATING, JP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4839-4849
[4]  
BERRY MV, 1986, SPRINGER LECT NOTES, V263, P1
[5]   PHASE OF THE RIEMANN ZETA-FUNCTION AND THE INVERTED HARMONIC-OSCILLATOR [J].
BHADURI, RK ;
KHARE, A ;
LAW, J .
PHYSICAL REVIEW E, 1995, 52 (01) :486-491
[6]  
BHADURI RK, 1988, MODELS NUCLEON, P27
[7]  
BHADURI RK, IN PRESS ANN PHYS
[8]  
BHADURI RK, IPBBSR9557
[9]   SEMICLASSICAL QUANTIZATION OF MULTIDIMENSIONAL SYSTEMS [J].
BOGOMOLNY, EB .
NONLINEARITY, 1992, 5 (04) :805-866
[10]   SCALING VIOLATION IN A FIELD-THEORY OF CLOSED STRINGS IN ONE PHYSICAL DIMENSION [J].
BREZIN, E ;
KAZAKOV, VA ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1990, 338 (03) :673-688