A review of pseudospectral optimal control: From theory to flight

被引:286
作者
Ross, I. Michael [1 ]
Karpenko, Mark [1 ]
机构
[1] USN, Postgrad Sch, Monterey, CA USA
关键词
Pseudospectral optimal control; Convergence theorems; Flight applications; Embedded platforms; TRAJECTORY OPTIMIZATION; CONVERGENCE;
D O I
10.1016/j.arcontrol.2012.09.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The home space for optimal control is a Sobolev space. The home space for pseudospectral theory is also a Sobolev space. It thus seems natural to combine pseudospectral theory with optimal control theory and construct "pseudospectral optimal control theory", a term coined by Ross. In this paper, we review key theoretical results in pseudospectral optimal control that have proven to be critical for a successful flight. Implementation details of flight demonstrations onboard NASA spacecraft are discussed along with emerging trends and techniques in both theory and practice. The 2011 launch of pseudospectral optimal control in embedded platforms is changing the way in which we see solutions to challenging control problems in aerospace and autonomous systems. Published by Elsevier Ltd.
引用
收藏
页码:182 / 197
页数:16
相关论文
共 74 条
[1]  
[Anonymous], AM CONTR C
[2]  
Bedrossian N., 2007, 20 INT S SPAC FLIGHT
[3]  
Bedrossian N., 2007, AIAA GUID NAV CONTR, P76734
[4]  
Bedrossian NS, 2009, IEEE CONTR SYST MAG, V29, P53, DOI 10.1109/MCS.2009.934089
[5]   STEERING LAW DESIGN FOR REDUNDANT SINGLE-GIMBAL CONTROL MOMENT GYROSCOPES [J].
BEDROSSIAN, NS ;
PARADISO, J ;
BERGMANN, EV ;
ROWELL, D .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1990, 13 (06) :1083-1089
[6]  
Bollino K., 2007, AIAA INF AER WORKSH
[7]   Smooth Proximity Computation for Collision-Free Optimal Control of Multiple Robotic Manipulators [J].
Cascio, J. ;
Karpenko, M. ;
Gong, Q. ;
Sekhavat, P. ;
Ross, I. M. .
2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, :2452-2457
[8]   THE PSEUDOSPECTRAL LEGENDRE METHOD FOR DISCRETIZING OPTIMAL-CONTROL PROBLEMS [J].
ELNAGAR, G ;
KAZEMI, MA ;
RAZZAGHI, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (10) :1793-1796
[9]   Pseudospectral chebyshev optimal control of constrained nonlinear dynamical systems [J].
Elnagar, GN .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1998, 11 (02) :195-217
[10]   Direct trajectory optimization by a Chebyshev pseudospectral method [J].
Fahroo, F ;
Ross, IM .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2002, 25 (01) :160-166