Ice algal bloom development on the surface of the Greenland Ice Sheet

被引:67
作者
Williamson, C. J. [1 ,2 ]
Anesio, A. M. [1 ]
Cook, J. [3 ]
Tedstone, A. [1 ]
Poniecka, E. [4 ]
Holland, A. [1 ]
Fagan, D. [2 ]
Tranter, M. [1 ]
Yallop, M. L. [2 ]
机构
[1] Univ Bristol, Bristol Glaciol Ctr, 12 Berkely Sq, Bristol BS8 1SS, Avon, England
[2] Univ Bristol, Sch Biol Sci, 24 Tyndall Ave, Bristol BS8 1TQ, Avon, England
[3] Univ Sheffield, Dept Geog, Sheffield S10 2TN, S Yorkshire, England
[4] Cardiff Univ, Sch Earth & Ocean Sci, Main Bldg,Pk Pl, Cardiff CF10 3AT, S Glam, Wales
基金
英国自然环境研究理事会;
关键词
Greenland; ice sheet; ice algae; glacier; zygnametophyceae; albedo; LABILE ORGANIC-CARBON; SNOW ALGAE; COMMUNITY; ULTRASTRUCTURE; CHLOROPHYTA; GLACIERS; PHOTOSYNTHESIS; ZYGNEMATALES; EXPORT;
D O I
10.1093/femsec/fiy025
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
It is fundamental to understand the development of Zygnematophycean (Streptophyte) micro-algal blooms within Greenland Ice Sheet (GrIS) supraglacial environments, given their potential to significantly impact both physical (melt) and chemical (carbon and nutrient cycling) surface characteristics. Here, we report on a space-for-time assessment of a GrIS ice algal bloom, achieved by sampling an similar to 85 km transect spanning the south-western GrIS bare ice zone during the 2016 ablation season. Cell abundances ranged from 0 to 1.6 x 10(4) cells ml(-1), with algal biomass demonstrated to increase in surface ice with time since snow line retreat (R-2 = 0.73, P < 0.05). A suite of light harvesting and photo-protective pigments were quantified across transects (chlorophylls, carotenoids and phenols) and shown to increase in concert with algal biomass. Ice algal communities drove net autotrophy of surface ice, with maximal rates of net production averaging 0.52 +/- 0.04 mg C l(-1) d(-1), and a total accumulation of 1.306 Gg C (15.82 +/- 8.14 kg C km(-2)) predicted for the 2016 ablation season across an 8.24 x 10(4) km(2) region of the GrIS. By advancing our understanding of ice algal bloom development, this study marks an important step toward projecting bloom occurrence and impacts into the future.
引用
收藏
页数:10
相关论文
共 38 条
[11]   Biovolume calculation for pelagic and benthic microalgae [J].
Hillebrand, H ;
Dürselen, CD ;
Kirschtel, D ;
Pollingher, U ;
Zohary, T .
JOURNAL OF PHYCOLOGY, 1999, 35 (02) :403-424
[12]   The cryoconite ecosystem on the Greenland ice sheet [J].
Hodson, Andy ;
Boggild, Carl ;
Hanna, Edward ;
Huybrechts, Phillipe ;
Langford, Harry ;
Cameron, Karen ;
Houldsworth, Alexandra .
ANNALS OF GLACIOLOGY, 2010, 51 (56) :123-129
[13]   Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques [J].
Holzinger, Andreas ;
Pichrtova, Martina .
FRONTIERS IN PLANT SCIENCE, 2016, 7
[14]   SNOW ALGAE OF THE WINDMILL ISLANDS, CONTINENTAL ANTARCTICA - MESOTAENIUM-BERGGRENII (ZYGNEMATALES, CHLOROPHYTA) THE ALGA OF GRAY SNOW [J].
LING, HU ;
SEPPELT, RD .
ANTARCTIC SCIENCE, 1990, 2 (02) :143-148
[15]   The diversity of ice algal communities on the Greenland Ice Sheet as revealed by oligotyping [J].
Lutz, Stefanie ;
McCutcheon, Jenine ;
McQuaid, James B. ;
Benning, Liane G. .
MICROBIAL GENOMICS, 2018, 4 (03)
[16]   Variations of algal communities cause darkening of a Greenland glacier [J].
Lutz, Stefanie ;
Anesio, Alexandre M. ;
Villar, Susana E. Jorge ;
Benning, Liane G. .
FEMS MICROBIOLOGY ECOLOGY, 2014, 89 (02) :402-414
[17]   ESTIMATING CARBON, NITROGEN, PROTEIN, AND CHLOROPHYLL-A FROM VOLUME IN MARINE-PHYTOPLANKTON [J].
MONTAGNES, DJS ;
BERGES, JA ;
HARRISON, PJ ;
TAYLOR, FJR .
LIMNOLOGY AND OCEANOGRAPHY, 1994, 39 (05) :1044-1060
[18]  
Musilova M, 2017, NAT GEOSCI, V10, P360, DOI [10.1038/NGEO2920, 10.1038/ngeo2920]
[19]  
Nordenskiold A. E., 1872, GEOL MAG, V9, P516, DOI 10.1017/S0016756800466033
[20]   Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis [J].
Remias, D ;
Lütz-Meindl, U ;
Lütz, C .
EUROPEAN JOURNAL OF PHYCOLOGY, 2005, 40 (03) :259-268