Fusion in the entwined category of Yetter-Drinfeld modules of a rank-1 Nichols algebra

被引:7
作者
Semikhatov, A. M. [1 ]
机构
[1] RAS, Lebedev Phys Inst, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
logarithmic conformal field theory; fusion; Nichols algebra; Yetter-Drinfeld module; QUANTUM GROUPS; CROSSED-MODULES; GROUP-REPRESENTATIONS; MINIMAL MODELS; W-ALGEBRA; CLASSIFICATION; EXTENSIONS; ROOT;
D O I
10.1007/s11232-012-0118-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the braided context, we rederive a popular nonsemisimple fusion algebra from a Nichols algebra. Together with the decomposition that we find for the product of simple Yetter-Drinfeld modules, this strongly suggests that the relevant Nichols algebra furnishes an equivalence with the triplet W-algebra in the (p, 1) logarithmic models of conformal field theory. For this, the category of Yetter-Drinfeld modules is to be regarded as an entwined category (i.e., a category with monodromy but not with braiding).
引用
收藏
页码:1329 / 1358
页数:30
相关论文
共 79 条
[1]  
Abe T., 2011, ARXIV11081823V1MATHQ
[2]   On W-algebra extensions of (2, p) minimal models: p > 3 [J].
Adamovic, Drazen ;
Milas, Antun .
JOURNAL OF ALGEBRA, 2011, 344 (01) :313-332
[3]   Lattice construction of logarithmic modules for certain vertex algebras [J].
Adamovic, Drazen ;
Milas, Antun .
SELECTA MATHEMATICA-NEW SERIES, 2009, 15 (04) :535-561
[4]  
Alekseev A. Yu., 1995, ST PETERSB MATH J, V6, P969
[5]  
ANDRUSKIEWITSCH AG99 N., 1999, Bol. Acad. Nac. Cienc. (Cordoba), V63, P45
[6]  
Andruskiewitsch N, 2011, CONTEMP MATH, V537, P31
[7]  
Andruskiewitsch N, 2002, MATH SCI R, V43, P1
[8]  
Andruskiewitsch N., 2004, LECT NOTES PURE APPL, V237, P35
[9]  
Andruskiewitsch N., 2002, CONT MATH, V294, P1
[10]  
Andruskiewitsch N, 2011, CONTEMP MATH, V544, P123