Surface subgroups from homology

被引:23
作者
Calegari, Danny [1 ]
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
D O I
10.2140/gt.2008.12.1995
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a word-hyperbolic group, obtained as a graph of free groups amalgamated along cyclic subgroups. If H-2(G;Q) is nonzero, then G contains a closed hyperbolic surface subgroup. Moreover, the unit ball of the Gromov-Thurston norm on H-2(G;R) is a finite-sided rational polyhedron.
引用
收藏
页码:1995 / 2007
页数:13
相关论文
共 16 条
[1]  
[Anonymous], ALGEBRAIC TOPOLOGY
[2]  
Atiyah I. M., 1969, Publ. Math. Inst. Hautes Etudes Sci., V37, P5
[3]  
Bavard C., 1991, Enseign. Math., V37, P109
[4]  
Bestvina M., QUESTIONS GEOMETRIC
[5]  
CALEGARI D, ARXIV08021352
[6]  
CALEGARI D, SCL MONOGRAPH
[7]  
GABAI D, 1983, J DIFFER GEOM, V18, P445
[8]   Cohomological lower bounds for isoperimetric functions on groups [J].
Gersten, SM .
TOPOLOGY, 1998, 37 (05) :1031-1072
[9]   Surface subgroups of Coxeter and Artin groups [J].
Gordon, CM ;
Long, DD ;
Reid, AW .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 189 (1-3) :135-148
[10]  
Gromov M., 1987, Math. Sci. Res. Inst. Publ., V8, P75, DOI [DOI 10.1007/978-1-4613-9586-7_3, 10.1007/978-1-4613-9586-7_3]