Chemical Looping Dry Reforming as Novel, Intensified Process for CO2 Activation

被引:97
作者
Bhavsar, Saurabh [1 ,2 ]
Najera, Michelle [1 ,3 ]
Veser, Goetz [1 ,2 ,3 ]
机构
[1] Univ Pittsburgh, Dept Chem Engn, Swanson Sch Engn, Pittsburgh, PA 15261 USA
[2] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA
[3] Univ Pittsburgh, Mascaro Ctr Sustainable Innovat, Pittsburgh, PA 15261 USA
基金
美国国家科学基金会;
关键词
Carbon capture; Chemical looping; CO2; utilization; Nanomaterials; Process Intensification; HYDROGEN-PRODUCTION; SYNTHESIS GAS; CATALYTIC COMBUSTION; PARTIAL OXIDATION; POWER-GENERATION; OXYGEN CARRIERS; REDOX REACTIONS; NI CATALYSTS; METHANE; CAPTURE;
D O I
10.1002/ceat.201100649
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Chemical looping dry reforming (CLDR) is a novel, intensified route for CO2 activation. Two nanostructured carriers (Fe-BHA and Fe@SiO2) are synthesized, characterized, and evaluated with regard to activity and stability in thermogravimetric and fixed-bed CLDR reactor studies over a temperature range of similar to 500-800 degrees C. Fe-barium hexaaluminate (Fe-BHA) shows fast redox kinetics and stable operation over multiple CLDR cycles, while Fe@SiO2 exhibits poor activity for CO generation due to a partial loss of the core-shell structure and formation of silicates. While the latter could be removed via a two-step oxidation scheme, carrier utilization remained well below that of Fe-BHA (similar to?51?% versus similar to?15?%). However, the two-step oxidation configuration turns the net endothermic CLDR process into a net exothermic process, opening up a highly efficient autothermal process alternative.
引用
收藏
页码:1281 / 1290
页数:10
相关论文
共 35 条
[1]   Exergy analysis of chemical-looping combustion systems [J].
Anheden, M ;
Svedberg, G .
ENERGY CONVERSION AND MANAGEMENT, 1998, 39 (16-18) :1967-1980
[2]   Thermal stabilization of catalyst supports and their application to high-temperature catalytic combustion [J].
Arai, H ;
Machida, M .
APPLIED CATALYSIS A-GENERAL, 1996, 138 (02) :161-176
[3]   Stabilizing metal nanoparticles for heterogeneous catalysis [J].
Cao, Anmin ;
Lu, Rongwen ;
Veser, Goetz .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (41) :13499-13510
[4]   Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion [J].
Cho, P ;
Mattisson, T ;
Lyngfelt, A .
FUEL, 2004, 83 (09) :1215-1225
[5]   High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria [J].
Chueh, William C. ;
Falter, Christoph ;
Abbott, Mandy ;
Scipio, Danien ;
Furler, Philipp ;
Haile, Sossina M. ;
Steinfeld, Aldo .
SCIENCE, 2010, 330 (6012) :1797-1801
[6]   Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas [J].
Fan, Mun-Sing ;
Abdullah, Ahmad Zuhairi ;
Bhatia, Subhash .
CHEMCATCHEM, 2009, 1 (02) :192-208
[7]   HYDROTHERMAL STABILITY OF PURE AND MODIFIED MICROPOROUS SILICA MEMBRANES [J].
FOTOU, GP ;
LIN, YS ;
PRATSINIS, SE .
JOURNAL OF MATERIALS SCIENCE, 1995, 30 (11) :2803-2808
[8]   Reaction kinetics of reduction and oxidation of metal oxides for hydrogen production [J].
Go, Kany Seok ;
Son, Sung Real ;
Kim, Sang Done .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (21) :5986-5995
[9]   Syngas redox (SGR) process to produce hydrogen from coal derived syngas [J].
Gupta, Puneet ;
Velazquez-Vargas, Luis G. ;
Fan, Liang-Shih .
ENERGY & FUELS, 2007, 21 (05) :2900-2908
[10]   Chemical-looping combustion (CLC) for inherent CO2 separations-a review [J].
Hossain, Mohammad M. ;
de lasa, Hugo I. .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (18) :4433-4451