Invariant Solutions to the Strominger System on Complex Lie Groups and Their Quotients

被引:34
作者
Fei, Teng [1 ]
Yau, Shing-Tung [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
MONGE-AMPERE EQUATION; UNITARY REPRESENTATIONS; COCOMPACT LATTICES; MANIFOLDS; EXISTENCE; METRICS; TORSION;
D O I
10.1007/s00220-015-2374-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using canonical 1-parameter family of Hermitian connections on the tangent bundle, we provide invariant solutions to the Strominger system on certain complex Lie groups and their quotients. Both flat and non-flat cases are discussed in detail. This paper answers a question proposed by Andreas and Garcia-Fernandez in Comm Math Phys 332(3):1381-1383, 2014.
引用
收藏
页码:1183 / 1195
页数:13
相关论文
共 19 条
[1]  
ABBENA E, 1986, B UNIONE MAT ITAL, V5A, P371
[2]   Solutions of the Strominger System via Stable Bundles on Calabi-Yau Threefolds [J].
Andreas, Bjoern ;
Garcia-Fernandez, Mario .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 315 (01) :153-168
[3]  
Andreas B, 2014, COMMUN MATH PHYS, V332, P1381, DOI 10.1007/s00220-014-1920-5
[4]  
[Anonymous], 1986, Comm. Pure Appl. Math.
[5]  
Biswas I, 2013, COMMUN MATH PHYS, V322, P373, DOI 10.1007/s00220-013-1765-3
[6]   Non-Kaehler Heterotic String Compactifications with Non-Zero Fluxes and Constant Dilaton [J].
Fernandez, Marisa ;
Ivanov, Stefan ;
Ugarte, Luis ;
Villacampa, Raquel .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (02) :677-697
[7]  
Fu JX, 2008, J DIFFER GEOM, V78, P369
[8]   Local Heterotic Torsional Models [J].
Fu, Ji-Xiang ;
Tseng, Li-Sheng ;
Yau, Shing-Tung .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (03) :1151-1169
[9]  
Gauduchon P, 1997, B UNIONE MAT ITAL, V11B, P257
[10]   Geometric model for complex non-Kanhler manifolds with SU (3) structure [J].
Goldstein, E ;
Prokushkin, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 251 (01) :65-78