The unifying theory of scaling in thermal convection: the updated prefactors

被引:208
作者
Stevens, Richard J. A. M. [1 ,2 ,3 ]
van der Poel, Erwin P. [2 ,3 ]
Grossmann, Siegfried [4 ]
Lohse, Detlef [2 ,3 ]
机构
[1] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
[2] Univ Twente, Phys Fluids Grp, Fac Sci & Technol, JM Burgers Ctr Fluid Dynam, NL-7500 AE Enschede, Netherlands
[3] Univ Twente, MESA Inst, NL-7500 AE Enschede, Netherlands
[4] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
关键词
Benard convection; turbulent convection; turbulence theory; RAYLEIGH-BENARD CONVECTION; PRANDTL-NUMBER DEPENDENCE; HEAT-TRANSPORT; TURBULENT CONVECTION; NUSSELT NUMBER;
D O I
10.1017/jfm.2013.298
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The unifying theory of scaling in thermal convection (Grossmann & Lohse, J. Fluid. Mech., vol. 407, 2000, pp. 27-56; henceforth the GL theory) suggests that there are no pure power laws for the Nusselt and Reynolds numbers as function of the Rayleigh and Prandtl numbers in the experimentally accessible parameter regime. In Grossmann & Lohse (Phys. Rev. Lett., vol. 86, 2001, pp. 3316-3319) the dimensionless parameters of the theory were fitted to 155 experimental data points by Ahlers & Xu (Phys. Rev. Lett., vol. 86, 2001, pp. 3320-3323) in the regime 3 x 10(7) <= Ra <= 3 x 10(9) and 4 <= Pr <= 34 and Grossmann & Lohse (Phys. Rev. E, vol. 66, 2002, p. 016305) used the experimental data point from Qiu & Tong (Phys. R e v. E, vol. 64, 2001, p. 036304) and the fact that Nu(Ra, Pr) is independent of the parameter a, which relates the dimensionless kinetic boundary thickness with the square root of the wind Reynolds number, to fix the Reynolds number dependence. Meanwhile the theory is, on the one hand, well-confirmed through various new experiments and numerical simulations; on the other hand, these new data points provide the basis for an updated fit in a much larger parameter space. Here we pick four well-established (and sufficiently distant) Nu(Ra, Pr) data points and show that the resulting Nu(Ra, Pr) function is in agreement with almost all established experimental and numerical data up to the ultimate regime of thermal convection, whose onset also follows from the theory. One extra Re(Ra, Pr) data point is used to fix Re(Ra Pr). As R e can depend on the definition and the aspect ratio, the transformation properties of the GL equations are discussed in order to show how the GL coefficients can easily be adapted to new Reynolds number data while keeping Nu(Ra, Pr) unchanged.
引用
收藏
页码:295 / 308
页数:14
相关论文
共 60 条
[1]   Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh-Benard convection [J].
Ahlers, G .
PHYSICAL REVIEW E, 2001, 63 (01)
[2]   Prandtl-number dependence of heat transport in turbulent Rayleigh-Benard convection [J].
Ahlers, G ;
Xu, XC .
PHYSICAL REVIEW LETTERS, 2001, 86 (15) :3320-3323
[3]   Heat transport by turbulent Rayleigh-Benard convection for Pr ≃ 0.8 and 3 x 1012 ≲ Ra ≲ 1015: aspect ratio Γ=0.50 [J].
Ahlers, Guenter ;
He, Xiaozhou ;
Funfschilling, Denis ;
Bodenschatz, Eberhard .
NEW JOURNAL OF PHYSICS, 2012, 14
[4]   Logarithmic Temperature Profiles in Turbulent Rayleigh-Benard Convection [J].
Ahlers, Guenter ;
Bodenschatz, Eberhard ;
Funfschilling, Denis ;
Grossmann, Siegfried ;
He, Xiaozhou ;
Lohse, Detlef ;
Stevens, Richard J. A. M. ;
Verzicco, Roberto .
PHYSICAL REVIEW LETTERS, 2012, 109 (11)
[5]   Turbulent Rayleigh-Benard convection for a Prandtl number of 0.67 [J].
Ahlers, Guenter ;
Bodenschatz, Eberhard ;
Funfschilling, Denis ;
Hogg, James .
JOURNAL OF FLUID MECHANICS, 2009, 641 :157-167
[6]   Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection [J].
Ahlers, Guenter ;
Grossmann, Siegfried ;
Lohse, Detlef .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :503-537
[7]   Effect of inertia in Rayleigh-Benard convection [J].
Breuer, M ;
Wessling, S ;
Schmalzl, J ;
Hansen, U .
PHYSICAL REVIEW E, 2004, 69 (02) :026302-1
[8]   Heat transport in turbulent Rayleigh-Benard convection: Effect of finite top- and bottom-plate conductivities [J].
Brown, E ;
Nikolaenko, A ;
Funfschilling, D ;
Ahlers, G .
PHYSICS OF FLUIDS, 2005, 17 (07) :1-10
[9]   Strong symmetrical non-Oberbeck-Boussinesq turbulent convection and the role of compressibility [J].
Burnishev, Yuri ;
Segre, Enrico ;
Steinberg, Victor .
PHYSICS OF FLUIDS, 2010, 22 (03) :8-15
[10]   SCALING OF HARD THERMAL TURBULENCE IN RAYLEIGH-BENARD CONVECTION [J].
CASTAING, B ;
GUNARATNE, G ;
HESLOT, F ;
KADANOFF, L ;
LIBCHABER, A ;
THOMAE, S ;
WU, XZ ;
ZALESKI, S ;
ZANETTI, G .
JOURNAL OF FLUID MECHANICS, 1989, 204 :1-30