Magnon relaxation in a spin nematic

被引:13
作者
Butrim, V. I. [1 ]
Ivanov, B. A. [2 ]
Kuznetsov, A. S. [1 ]
Khymyn, R. S. [3 ]
机构
[1] VI Vernadsky Tvarichesky Natl Univ, UA-95007 Simferopol, Ukraine
[2] Natl Acad Sci Ukraine, Inst Magnetism, UA-03142 Kiev, Ukraine
[3] TG Schevchenko Kiev Univ, UA-13127 Kiev, Ukraine
关键词
antiferromagnetism; damping; magnetisation; magnons; nematic liquid crystals;
D O I
10.1063/1.3029753
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnon relaxation processes in the nematic phase of a magnet with spin S=1 are investigated for a general form of the isotropic exchange interaction, including bilinear and biquadratic interactions in respect to the site spin operators. The temperature dependence and momentum dependence of the magnetic decrement are found in the long-wavelength approximation. It is shown that the elementary excitations in a spin nematic (magnons) have all the properties of Goldstone excitations; in the limit of small wave vectors they have a linear dispersion law, while the damping is quadratic in the wave vector. The similarity of magnon behavior in a spin nematic to that in an antiferromagnet is noted.
引用
收藏
页码:997 / 1004
页数:8
相关论文
共 53 条
[1]  
ABYZOV AS, 1979, ZH EKSP TEOR FIZ+, V76, P1700
[2]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[3]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[4]  
Akhiezer A. I., 1968, SPIN WAVES
[5]  
[Anonymous], 2001, SYMMETRY PHYS PROPER
[7]   EXACT SOLUTION OF THE ONE-DIMENSIONAL ISOTROPIC HEISENBERG CHAIN WITH ARBITRARY SPINS S [J].
BABUJIAN, HM .
PHYSICS LETTERS A, 1982, 90 (09) :479-482
[8]   KINETIC-EQUATION AND TRANSPORT-COEFFICIENTS FOR KINK SOLITONS IN THE SINE-GORDON EQUATION [J].
BARYAKHTAR, IV ;
BARYAKHTAR, VG ;
ECONOMOU, EN .
PHYSICS LETTERS A, 1995, 207 (1-2) :67-71
[9]  
Baryakhtar V. G., 1984, GREENS FUNCTIONS THE
[10]   CRYSTAL SYMMETRY AND THE STRUCTURE OF THE RELAXATION TERMS IN THE DYNAMIC EQUATIONS OF MOTION FOR MAGNETIZATION [J].
BARYAKHTAR, VG .
PHYSICA B, 1989, 159 (01) :20-25