A Multimedia Database for Automatic Meal Assessment Systems

被引:15
作者
Allegra, Dario [1 ]
Anthimopoulos, Marios [2 ,3 ]
Dehais, Joachim [2 ]
Lu, Ya [2 ]
Stanco, Filippo [1 ]
Farinella, Giovanni Maria [1 ]
Mougiakakou, Stavroula [2 ,4 ]
机构
[1] Univ Catania, Dept Math & Comp Sci, Catania, Italy
[2] Univ Bern, ARTORG Ctr Biomed Engn Res, Bern, Switzerland
[3] Bern Univ Hosp, Dept Emergency Med, Bern, Switzerland
[4] Bern Univ Hosp, Dept Endocrinol Diabet & Clin Nutr, Bern, Switzerland
来源
NEW TRENDS IN IMAGE ANALYSIS AND PROCESSING - ICIAP 2017 | 2017年 / 10590卷
关键词
D O I
10.1007/978-3-319-70742-6_46
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A healthy diet is crucial for maintaining overall health and for controlling food-related chronic diseases, like diabetes and obesity. Proper diet management however, relies on the rather challenging task of food intake assessment and monitoring. To facilitate this procedure, several systems have been recently proposed for automatic meal assessment on mobile devices using computer vision methods. The development and validation of these systems requires large amounts of data and although some public datasets already exist, they don't cover the entire spectrum of inputs and/or uses. In this paper, we introduce a database, which contains RGB images of meals together with the corresponding depth maps, 3D models, segmentation and recognition maps, weights and volumes. We also present a number of experiments on the new database to provide baselines performances in the context of food segmentation, depth and volume estimation.
引用
收藏
页码:471 / 478
页数:8
相关论文
共 23 条
  • [1] Anthimopoulos Marios, 2015, J Diabetes Sci Technol, V9, P507, DOI 10.1177/1932296815580159
  • [2] Badrinarayanan V., 2017, P IEEE TPAMI
  • [3] Carbohydrate Estimation Supported by the GoCARB System in Individuals With Type 1 Diabetes: A Randomized Prospective Pilot Study
    Bally, Lia
    Dehais, Joachim
    Nakas, Christos T.
    Anthimopoulos, Marios
    Laimer, Markus
    Rhyner, Daniel
    Rosenberg, George
    Zueger, Thomas
    Diem, Peter
    Mougiakakou, Stavroula
    Stettler, Christoph
    [J]. DIABETES CARE, 2017, 40 (02) : E6 - E7
  • [4] Bossard L, 2014, LECT NOTES COMPUT SC, V8694, P446, DOI 10.1007/978-3-319-10599-4_29
  • [5] PFID: PITTSBURGH FAST-FOOD IMAGE DATASET
    Chen, Mei
    Dhingra, Kapil
    Wu, Wen
    Yang, Lei
    Sukthankar, Rahul
    Yang, Jie
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 289 - +
  • [6] Two-View 3D Reconstruction for Food Volume Estimation
    Dehais, Joachim
    Anthimopoulos, Marios
    Shevchik, Sergey
    Mougiakakou, Stavroula
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (05) : 1090 - 1099
  • [7] Food Image Segmentation for Dietary Assessment
    Dehais, Joachim
    Anthimopoulos, Marios
    Mougiakakou, Stavroula
    [J]. MADIMA'16: PROCEEDINGS OF THE 2ND INTERNATIONAL WORKSHOP ON MULTIMEDIA ASSISTED DIETARY MANAGEMENT, 2016, : 23 - 28
  • [8] Eigen C., 2014, ADV NEURAL INF PROCE, V27, P2366, DOI DOI 10.5555/2969033.2969091
  • [9] Retrieval and classification of food images
    Farinella, Giovanni Maria
    Allegra, Dario
    Moltisanti, Marco
    Stanco, Filippo
    Battiato, Sebastiano
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2016, 77 : 23 - 39
  • [10] On the Exploitation of One Class Classification to Distinguish Food Vs Non-Food Images
    Farinella, Giovanni Maria
    Allegra, Dario
    Stanco, Filippo
    Battiato, Sebastiano
    [J]. NEW TRENDS IN IMAGE ANALYSIS AND PROCESSING - ICIAP 2015 WORKSHOPS, 2015, 9281 : 375 - 383