Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM

被引:99
作者
Lee, Subin [1 ]
Im, Jiseong [1 ]
Yoo, Youngdong [2 ]
Bitzek, Erik [3 ]
Kiener, Daniel [4 ]
Richter, Gunther [5 ]
Kim, Bongsoo [2 ]
Oh, Sang Ho [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 790784, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Chem, Taejon 305701, South Korea
[3] Univ Erlangen Nurnberg, Dept Mat Sci & Engn, Inst Gen Mat Properties 1, D-91058 Erlangen, Germany
[4] Univ Leoben, Dept Mat Phys, A-8700 Leoben, Austria
[5] Max Planck Inst Intelligent Syst, D-70569 Stuttgart, Germany
基金
新加坡国家研究基金会;
关键词
PLASTIC-DEFORMATION; AU; STRENGTH; GROWTH; FILMS; FCC;
D O I
10.1038/ncomms4033
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis and loading direction. Here we report, by combination of in situ transmission electron microscopy and molecular dynamic simulation, the conditions under which particular deformation mechanisms take place during the uniaxial loading of [110]-oriented Au nanowires. Furthermore, by performing cyclic uniaxial loading, we show reversible plastic deformation by twinning and consecutive detwinning in tension and compression, respectively. Molecular dynamics simulations rationalize the observed behaviours in terms of the orientation-dependent resolved shear stress on the leading and trailing partial dislocations, their potential nucleation sites and energy barriers. This reversible twinning-detwinning process accommodates large strains that can be beneficially utilized in applications requiring high ductility in addition to ultra-high strength.
引用
收藏
页数:10
相关论文
共 36 条
[1]  
Bitzek Erik, 2012, Journal of Solid Mechanics and Materials Engineering, V6, P99, DOI 10.1299/jmmp.6.99
[2]   Structural relaxation made simple [J].
Bitzek, Erik ;
Koskinen, Pekka ;
Gaehler, Franz ;
Moseler, Michael ;
Gumbsch, Peter .
PHYSICAL REVIEW LETTERS, 2006, 97 (17)
[3]   GROWTH AND PROPERTIES OF WHISKERS [J].
BRENNER, SS .
SCIENCE, 1958, 128 (3324) :569-575
[4]   Deformation twinning in nanocrystalline aluminum [J].
Chen, MW ;
Ma, E ;
Hemker, KJ ;
Sheng, HW ;
Wang, YM ;
Cheng, XM .
SCIENCE, 2003, 300 (5623) :1275-1277
[5]   Strain compensation by twinning in Au thin films: Experiment and model [J].
Dehm, G. ;
Oh, S. H. ;
Gruber, P. ;
Legros, M. ;
Fischer, F. D. .
ACTA MATERIALIA, 2007, 55 (19) :6659-6665
[6]  
Green JA, 2006, ARTHRITIS RHEUM-US, V54, P1705, DOI [10.1002/art.21799, 10.1016/j.actamat.2005.12.004]
[7]  
Greer JR, 2006, REV ADV MATER SCI, V13, P59
[8]  
Hirth J.P., 1982, Theory of Dislocations
[9]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[10]   Atomistic Simulations of Mechanics of Nanostructures [J].
Huang, Hanchen ;
Van Swygenhoven, Helena .
MRS BULLETIN, 2009, 34 (03) :160-162