REVERSED DETERMINANTAL INEQUALITIES FOR ACCRETIVE-DISSIPATIVE MATRICES

被引:20
作者
Lin, Minghua [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2012年 / 15卷 / 04期
关键词
determinantal inequality; accretive-dissipative matrix; Schur complement;
D O I
10.7153/mia-15-81
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A matrix A is an element of M-n(C) is said to be accretive-dissipative if, in its Toeplitz decomposition A = B+ iC, B = B*, C = C*, both matrices B and C are positive definite. Let A = [GRAPHICS] be an accretive-dissipative matrix, k and l be the orders of A(11) and A(22), respectively, and let m = min{k, l}. It is proved vertical bar detA vertical bar >= (4 kappa)(m)/(1+kappa)(2m) vertical bar det A(11)vertical bar vertical bar det A(22)vertical bar, where kappa is the maximum of the condition numbers of B and C.
引用
收藏
页码:955 / 958
页数:4
相关论文
共 5 条
[1]   Monotonicity of the optimal cost in the discrete-time regulator problem and Schur complements [J].
Clements, DJ ;
Wimmer, HK .
AUTOMATICA, 2001, 37 (11) :1779-1786
[2]   On the properties of accretive-dissipative matrices [J].
George, A ;
Ikramov, KD .
MATHEMATICAL NOTES, 2005, 77 (5-6) :767-776
[3]  
Horn R.A., 2012, Matrix Analysis
[4]  
Ikramov KhD., 2004, J MATH SCI N Y, V121, P2458, DOI DOI 10.1023/B:JOTH.0000026283.92486.1c
[5]   Equivalence of the Wielandt inequality and the Kantorovich inequality [J].
Zhang, FZ .
LINEAR & MULTILINEAR ALGEBRA, 2001, 48 (03) :275-279