Alveolar rhabdomyosarcoma-associated proteins PAX3/FOXO1A and PAX7/FOXO1A suppress the transcriptional activity of MyoD-target genes in muscle stem cells

被引:56
作者
Calhabeu, F. [1 ]
Hayashi, S. [2 ]
Morgan, J. E. [3 ]
Relaix, F. [2 ]
Zammit, P. S. [1 ]
机构
[1] Kings Coll London, Randall Div Cell & Mol Biophys, London SE1 1UL, England
[2] Univ Paris 06, INSERM, UMR S 787,Fac Med Pitie Salpetriere, Myol Grp,Avenir Team Mouse Mol Genet, Paris, France
[3] UCL Inst Child Hlth, Dubowitz Neuromuscular Ctr, London, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
alveolar rhabdomyosarcoma; PAX3/FOXO1A; PAX7/FOXO1A; MyoD; myogenin; satellite cell; PAX3-FKHR FUSION PROTEIN; SKELETAL-MUSCLE; SATELLITE CELLS; PROGENITOR CELLS; MYOGENIC DIFFERENTIATION; TERMINAL DIFFERENTIATION; FAMILY-MEMBERS; IN-VIVO; PAX3; EXPRESSION;
D O I
10.1038/onc.2012.73
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rhabdomyosarcoma (RMS) is the commonest soft-tissue sarcoma in childhood and is characterized by expression of myogenic proteins, including the transcription factors MyoD and myogenin. There are two main subgroups, embryonal RMS and alveolar RMS (ARMS). Most ARMS are associated with chromosomal translocations that have breakpoints in introns of either PAX3 or PAX7, and FOXO1A. These translocations create chimeric transcription factors termed PAX3/FOXO1A and PAX7/FOXO1A respectively. Upon ectopic PAX3/FOXO1A expression, together with other genetic manipulation in mice, both differentiating myoblasts and satellite cells (the resident stem cells of postnatal muscle) can give rise to tumours with ARMS characteristics. As PAX3 and PAX7 are part of transcriptional networks that regulate muscle stem cell function in utero and during early postnatal life, PAX3/FOXO1A and PAX7/FOXO1A may subvert normal PAX3 and PAX7 functions. Here we examined how PAX3/FOXO1A and PAX7/FOXO1A affect myogenesis in satellite cells. PAX3/FOXO1A or PAX7/FOXO1A inhibited myogenin expression and prevented terminal differentiation in nnurine satellite cells: the same effect as dominant-negative (DN) Pax3 or Pax7 constructs. The transcription of MyoD-target genes myogenin and muscle creatine kinase were suppressed by PAX3/FOXO1A or PAX7/FOXO1A in C2C12 myogenic cells again as seen with Pax3/7DN. PAX3/FOXO1A or PAX7/FOXO1A did not inhibit the transcriptional activity of MyoD by perturbing MyoD expression, localization, phosphorylation or interaction with E-proteins. Chromatin immunoprecipitation on the myogenin promoter showed that PAX3/FOXO1A or PAX7/FOXO1A did not prevent MyoD from binding. However, PAX3/FOXO1A or PAX7/FOXO1A reduced occupation of the myogenin promoter by RNA polynnerase II and decreased acetylation of histone H4, but did not directly bind to the myogenin promoter. Together, these observations reveal that PAX3/FOXO1A and PAX7/FOXO1A act to prevent myogenic differentiation via suppression of the transcriptional activation of MyoD-target genes. Oncogene (2013) 32, 651-662; doi:10.1038/onc.2012.73; published online 18 June 2012
引用
收藏
页码:651 / 662
页数:12
相关论文
共 58 条
[11]   Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas [J].
Davicioni, Elai ;
Finckenstein, Friedrich Graf ;
Shahbazian, Violette ;
Buckley, Jonathan D. ;
Triche, Timothy J. ;
Anderson, Michael J. .
CANCER RESEARCH, 2006, 66 (14) :6936-6946
[12]   Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt [J].
del Peso, L ;
González, VM ;
Hernández, R ;
Barr, FG ;
Núñez, G .
ONCOGENE, 1999, 18 (51) :7328-7333
[13]   In vitro transcription system delineates the distinct roles of the coactivators pCAF and p300 during MyoD/E47-dependent transactivation [J].
Dilworth, FJ ;
Seaver, KJ ;
Fishburn, AL ;
Htet, SL ;
Tapscott, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (32) :11593-11598
[14]  
ELDEIRY WS, 1995, CANCER RES, V55, P2910
[15]   Tumor-specific PAX3-FKHR transcription factor, but not PAX3, activates the platelet-derived growth factor alpha receptor [J].
Epstein, JA ;
Song, BL ;
Lakkis, M ;
Wang, CY .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (07) :4118-4130
[16]   PAX3 INHIBITS MYOGENIC DIFFERENTIATION OF CULTURED MYOBLAST CELLS [J].
EPSTEIN, JA ;
LAM, P ;
JEPEAL, L ;
MAAS, RL ;
SHAPIRO, DN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (20) :11719-11722
[17]   PAX-FKHR function as pangenes by simultaneously inducing and inhibiting myogenesis [J].
Finckenstein, F. Graf ;
Shahbazian, V. ;
Davicioni, E. ;
Ren, Y-X ;
Anderson, M. J. .
ONCOGENE, 2008, 27 (14) :2004-2014
[18]  
FREDERICKS WJ, 1995, MOL CELL BIOL, V15, P1522
[19]   Further Characterisation of the Molecular Signature of Quiescent and Activated Mouse Muscle Satellite Cells [J].
Gnocchi, Viola F. ;
White, Robert B. ;
Ono, Yusuke ;
Ellis, Juliet A. ;
Zammit, Peter S. .
PLOS ONE, 2009, 4 (04)
[20]  
GUO K, 1995, MOL CELL BIOL, V15, P3823