ON n-CENTRALIZING GENERALIZED DERIVATIONS IN SEMIPRIME RINGS WITH APPLICATIONS TO C*-ALGEBRAS

被引:20
作者
Dhara, Basudeb [2 ]
Ali, Shakir [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] Belda Coll, Dept Math, Belda Paschim Medinipur 721424, India
关键词
(Semi)prime ring; C*-algebra; derivation; generalized derivation; n-centralizing mapping; n-commuting mapping; PRIME-RINGS; MAPPINGS; COMMUTATIVITY; IDEALS;
D O I
10.1142/S0219498812501113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a ring with center Z(R) and n be a fixed positive integer. A mapping f : R -> R is said to be n-centralizing on a subset S of R if f(x)x(n) -x(n)f(x). Z(R) holds for all x is an element of S. The main result of this paper states that every n-centralizing generalized derivation F on a (n+1)!-torsion free semiprime ring is n-commuting. Further, we prove that if a generalized derivation F : R -> R is n-centralizing on a nonzero left ideal lambda, then either R contains a nonzero central ideal or lambda D(Z) subset of Z(R) for some derivation D of R. As an application, n-centralizing generalized derivations of C*-algebras are characterized.
引用
收藏
页数:11
相关论文
共 19 条
[1]  
ARA P, 2003, SPRINGER MONOGRAPH M
[2]  
Beidar K. I., 1996, RINGS GEN IDENTITIES
[3]   CENTRALIZING MAPPINGS OF SEMIPRIME RINGS [J].
BELL, HE ;
MARTINDALE, WS .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (01) :92-101
[4]   CENTRALIZING MAPPINGS AND DERIVATIONS IN PRIME-RINGS [J].
BRESAR, M .
JOURNAL OF ALGEBRA, 1993, 156 (02) :385-394
[6]   ON DERIVATIONS AND COMMUTATIVITY IN SEMIPRIME RINGS [J].
DENG, Q ;
BELL, HE .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (10) :3705-3713
[7]  
Deng Q., 1993, P ROY IRISH ACAD A, V93, P171
[8]   Generalized derivations in rings [J].
Hvala, B .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (04) :1147-1166
[9]   An engel condition with derivation for left ideals [J].
Lanski, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (02) :339-345
[10]  
Lee T.-K., 1996, Bull. Inst. Math. Acad. Sin., V24, P259