Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize

被引:56
|
作者
Yao, Lishan [1 ]
Li, Yanmei [1 ]
Ma, Chuanyu [1 ]
Tong, Lixiu [1 ]
Du, Feili [1 ]
Xu, Mingliang [1 ]
机构
[1] China Agr Univ, Coll Agron & Biotechnol, Natl Maize Improvement Ctr, State Key Lab Plant Physiol & Biochem,Ctr Crop Fu, Beijing 100193, Peoples R China
关键词
QUANTITATIVE TRAIT LOCI; FUMONISIN CONTAMINATION; CYTOCHROME-P450; GENE; EXPRESSION; CORN; MYCOTOXINS; VERTICILLIOIDES; ACCUMULATION; ARABIDOPSIS; LINES;
D O I
10.1111/jipb.12911
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fusariumear rot, caused byFusarium verticillioides, is a devastating fungal disease in maize that reduces yield and quality; moreover,F. verticillioidesproduces fumonisin mycotoxins, which pose serious threats to human and animal health. Here, we performed a genome-wide association study (GWAS) under three environmental conditions and identified 34 single-nucleotide polymorphisms (SNPs) that were significantly associated withFusariumear rot resistance. With reference to the maize B73 genome, 69 genes that overlapped with or were adjacent to the significant SNPs were identified as potential resistance genes toFusariumear rot. Comparing transcriptomes of the most resistant and most susceptible lines during the very early response toFusariumear rot, we detected many differentially expressed genes enriched for pathways related to plant immune responses, such as plant hormone signal transduction, phenylpropanoid biosynthesis, and cytochrome P450 metabolism. More than one-fourth of the potential resistance genes detected in the GWAS were differentially expressed in the transcriptome analysis, which allowed us to predict numbers of candidate genes for maize resistance to ear rot, including genes related to plant hormones, a MAP kinase, a PR5-like receptor kinase, and heat shock proteins. We propose that maize plants initiate early immune responses toFusariumear rot mainly by regulating the growth-defense balance and promoting biosynthesis of defense compounds.
引用
收藏
页码:1535 / 1551
页数:17
相关论文
共 50 条
  • [1] Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize
    Lishan Yao
    Yanmei Li
    Chuanyu Ma
    Lixiu Tong
    Feili Du
    Mingliang Xu
    Journal of Integrative Plant Biology, 2020, 62 (10) : 1535 - 1551
  • [2] Genome-wide association analysis of ear rot resistance caused by Fusarium verticillioides in maize
    de Jong, Guilherme
    Alves Pamplona, Andrezza Kellen
    Von Pinho, Renzo Garcia
    Balestre, Marcio
    GENOMICS, 2018, 110 (05) : 291 - 303
  • [3] A Genome-Wide Association Study Reveals Genes Associated with Fusarium Ear Rot Resistance in a Maize Core Diversity Panel
    Zila, Charles T.
    Fernando Samayoa, L.
    Santiago, Rogelio
    Butron, Ana
    Holland, James B.
    G3-GENES GENOMES GENETICS, 2013, 3 (11): : 2095 - 2104
  • [4] Linkage mapping and genome-wide association study reveals conservative QTL and candidate genes for Fusarium rot resistance in maize
    Wu, Yabin
    Zhou, Zijian
    Dong, Chaopei
    Chen, Jiafa
    Ding, Junqiang
    Zhang, Xuecai
    Mu, Cong
    Chen, Yuna
    Li, Xiaopeng
    Li, Huimin
    Han, Yanan
    Wang, Ruixia
    Sun, Xiaodong
    Li, Jingjing
    Dai, Xiaodong
    Song, Weibin
    Chen, Wei
    Wu, Jianyu
    BMC GENOMICS, 2020, 21 (01)
  • [5] Linkage mapping and genome-wide association study reveals conservative QTL and candidate genes for Fusarium rot resistance in maize
    Yabin Wu
    Zijian Zhou
    Chaopei Dong
    Jiafa Chen
    Junqiang Ding
    Xuecai Zhang
    Cong Mu
    Yuna Chen
    Xiaopeng Li
    Huimin Li
    Yanan Han
    Ruixia Wang
    Xiaodong Sun
    Jingjing Li
    Xiaodong Dai
    Weibin Song
    Wei Chen
    Jianyu Wu
    BMC Genomics, 21
  • [6] Combined Genome-Wide Association Study and Transcriptome Analysis Reveal Candidate Genes for Resistance to Rust (Puccinia graminis) in Dactylis glomerata
    Jin, Yarong
    Feng, Guangyan
    Luo, Jinchan
    Yan, Haidong
    Sun, Min
    Jing, Tingting
    Yang, Yuchen
    Jia, Jiyuan
    Zhu, Xin
    Wang, Xiaoshan
    Zhang, Xinquan
    Huang, Linkai
    PLANT DISEASE, 2024, 108 (07) : 2197 - 2205
  • [7] Genome-wide association study and genomic prediction of Fusarium ear rot resistance in tropical maize germplasm
    Yubo Liu
    Guanghui Hu
    Ao Zhang
    Alexander Loladze
    Yingxiong Hu
    Hui Wang
    Jingtao Qu
    Xuecai Zhang
    Michael Olsen
    Felix San Vicente
    Jose Crossa
    Feng Lin
    Boddupalli M.Prasanna
    The Crop Journal, 2021, 9 (02) : 325 - 341
  • [8] Genome-wide association study and genomic prediction of Fusarium ear rot resistance in tropical maize germplasm
    Liu, Yubo
    Hu, Guanghui
    Zhang, Ao
    Loladze, Alexander
    Hu, Yingxiong
    Wang, Hui
    Qu, Jingtao
    Zhang, Xuecai
    Olsen, Michael
    San Vicente, Felix
    Crossa, Jose
    Lin, Feng
    Prasanna, Boddupalli M.
    CROP JOURNAL, 2021, 9 (02): : 325 - 341
  • [9] Genome-Wide Association Study and QTL Mapping Reveal Genomic Loci Associated with Fusarium Ear Rot Resistance in Tropical Maize Germplasm
    Chen, Jiafa
    Shrestha, Rosemary
    Ding, Junqiang
    Zheng, Hongjian
    Mu, Chunhua
    Wu, Jianyu
    Mahuku, George
    G3-GENES GENOMES GENETICS, 2016, 6 (12): : 3803 - 3815
  • [10] Genome-wide association study and pathway analysis to decipher loci associated with Fusarium ear rot resistance in tropical maize germplasm
    Ayesiga, Stella Bigirwa
    Rubaihayo, Patrick
    Oloka, Bonny Michael
    Dramadri, Isaac Ozinga
    Sserumaga, Julius Pyton
    GENETIC RESOURCES AND CROP EVOLUTION, 2024, 71 (06) : 2435 - 2448