Bright solitons of the variants of the Novikov-Veselov equation with constant and variable coefficients

被引:20
作者
Boubir, B. [2 ]
Triki, H. [2 ]
Wazwaz, A. M. [1 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
[2] Badji Mokhtar Univ, Fac Sci, Dept Phys, Radiat Phys Lab, Annaba 23000, Algeria
关键词
Novikov-Veselov equation; Bright solitons; Wave ansatz; PERIODIC-WAVE SOLUTIONS; SUB-ODE METHOD; MKDV EQUATION; DISPERSION; EVOLUTION;
D O I
10.1016/j.apm.2012.03.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the existence of the bright soliton solution of four variants of the Novikov-Veselov equation with constant and time varying coefficients will be studied. We analyze the solitary wave solutions of the Novikov-Veselov equation in the cases of constant coefficients, time-dependent coefficients and damping term, generalized form, and in 1 + N dimensions with variable coefficients and forcing term. We use the solitary wave ansatz method to derive these solutions. The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Parametric conditions for the existence of the exact solutions are given. The solitary wave ansatz method presents a wider applicability for handling nonlinear wave equations. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:420 / 431
页数:12
相关论文
共 27 条
[1]   ON THE MOUTARD TRANSFORMATION FOR INTEGRABLE PARTIAL-DIFFERENTIAL EQUATIONS [J].
ATHORNE, C ;
NIMMO, JJC .
INVERSE PROBLEMS, 1991, 7 (06) :809-826
[2]   1-soliton solution of the K(m, n) equation with generalized evolution [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2008, 372 (25) :4601-4602
[3]   Bright and dark solitons of the generalized nonlinear Schrodinger's equation [J].
Biswas, Anjan ;
Milovic, Daniela .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) :1473-1484
[4]   New solitons and periodic wave solutions for nonlinear evolution equations [J].
El-Wakil, SA ;
Abdou, MA ;
Elhanbaly, A .
PHYSICS LETTERS A, 2006, 353 (01) :40-47
[5]   Stationary Veselov-Novikov equation and isothermally asymptotic surfaces in projective differential geometry [J].
Ferapontov, EV .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1999, 11 (02) :117-128
[6]  
Hirota R., 2004, The Direct Method in Soliton Theory
[7]   NONLINEAR SUPERPOSITION FORMULA OF THE NOVIKOV-VESELOV EQUATION [J].
HU, XB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (04) :1331-1338
[8]  
Huy Xing-Biao, 1996, J PHYS A, V29, P4589
[9]   Compacton and periodic wave solutions of the non-linear dispersive Zakharov-Kuznetsov equation [J].
Inc, Mustafa .
CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2007, 5 (03) :351-366
[10]  
Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539