Impact of Sugar Beet Waste on Strength and Durability of Alkali-Activated Slag Cement

被引:17
|
作者
Gharieb, Mahmoud [1 ]
Rashad, Alaa M. [2 ,3 ]
机构
[1] Housing & Bldg Natl Res Ctr HBRC, Raw Bldg Mat & Technol Proc Res Inst, Cairo, Egypt
[2] Housing & Bldg Natl Res Ctr HBRC, Bldg Mat Res & Qual Control Inst, Cairo, Egypt
[3] Shaqra Univ, Coll Engn, Civil Engn Dept, Riyadh, Saudi Arabia
关键词
alkali-activated slag; compressive strength; durability; setting time; sugar beet waste; workability; SULFATE ATTACK; CALCIUM-OXIDE; FURNACE SLAG; CAO; CARBONATION; COMPOSITES; SLUDGE; ENHANCEMENT; ADDITIVES; CONCRETE;
D O I
10.14359/51734354
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Herein, the first trial to investigate the possibility of using one type of sugar beet waste, named carbonation lime residue after calcination (CCR), as an additive for alkali-activated slag (AAS) cement was explored. For this reason, typical AAS cement was prepared, then slag was partially replaced with CCR at levels ranging from 2.5 to 15% by weight. To explore the effect of CCR on the properties of AAS pastes, typical traditional tests such as flowability, setting time, and compressive strength at various ages were measured. In addition, different types of durability such as accelerated aging, water-air cycles, water-hot air cycles, HCl attack, and cyclic wetting in 5% Na2SO4 and drying at 80 degrees C (176 degrees F) were explored. The results were analyzed with different advanced devices. The results showed that it is possible to use CCR as an additive, similar to CaO, for AAS cement. The flowability and setting time decreased with the inclusion of CCR. The inclusion of 5% CCR in AAS cement was the optimal content, which proved the best compressive strength, microstructure, and durability. On the contrary, the inclusion of 15% CCR showed a negative effect. The pronounced outcomes of this investigation may be the solution for sugar beet waste landfills and improving the properties of AAS cement.
引用
收藏
页码:79 / 90
页数:12
相关论文
共 50 条
  • [1] Durability of Alkali-Activated Slag Cement in Seawater Environment
    Gu, Yamin
    Fang, Yonghao
    TRENDS IN BUILDING MATERIALS RESEARCH, PTS 1 AND 2, 2012, 450-451 : 778 - 781
  • [2] Effect of geothermal waste on strength and microstructure of alkali-activated slag cement mortars
    Escalante-García, JI
    Gorokhovsky, AV
    Mendoza, G
    Fuentes, AF
    CEMENT AND CONCRETE RESEARCH, 2003, 33 (10) : 1567 - 1574
  • [3] Factors Influencing the Strength of Alkali-activated Slag Cement
    Zhou, Zhi-jun
    Li, Hui
    Song, Qiang
    Shen, Bao-jing
    ADVANCES IN CIVIL ENGINEERING AND ARCHITECTURE INNOVATION, PTS 1-6, 2012, 368-373 : 3240 - 3245
  • [4] Mechanical properties and durability of alkali-activated steel slag–blastfurnace slag cement
    Jing-xiong Zhong
    Li-ying Cao
    Mei Li
    Shu-ping Wang
    Fang Liu
    Xue-wei Lv
    Xiao-qin Peng
    Journal of Iron and Steel Research International, 2023, 30 : 1342 - 1355
  • [5] A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete
    Mohamed, Osama Ahmed
    MATERIALS, 2019, 12 (08)
  • [6] Mechanical properties and durability of alkali-activated steel slag-blastfurnace slag cement
    Zhong, Jing-xiong
    Cao, Li-ying
    Li, Mei
    Wang, Shu-ping
    Liu, Fang
    Lv, Xue-wei
    Peng, Xiao-qin
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2023, 30 (07) : 1342 - 1355
  • [7] MECHNICAL STRENGTH AND DURABILITY OF ALKALI-ACTIVATED FLY ASH/SLAG CONCRETE
    Chi, Maochieh
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2016, 24 (05): : 958 - 967
  • [8] ALKALI-ACTIVATED SLAG CEMENT BASED RADIOACTIVE-WASTE FORMS
    WU, XQ
    YEN, S
    SHEN, XD
    TANG, MS
    YANG, LJ
    CEMENT AND CONCRETE RESEARCH, 1991, 21 (01) : 16 - 20
  • [9] Properties and durability of alkali-activated ladle slag
    Elijah Adesanya
    Katja Ohenoja
    Paivo Kinnunen
    Mirja Illikainen
    Materials and Structures, 2017, 50
  • [10] Properties and durability of alkali-activated ladle slag
    Adesanya, Elijah
    Ohenoja, Katja
    Kinnunen, Paivo
    Illikainen, Mirja
    MATERIALS AND STRUCTURES, 2017, 50 (06)