Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles

被引:126
作者
Alarifi, Saud [1 ]
Ali, Daoud [1 ]
Alkahtani, Saad [1 ]
Verma, Ankit [2 ]
Ahamed, Maqusood [3 ]
Ahmed, Mukhtar [4 ]
Alhadlaq, Hisham A. [3 ,5 ]
机构
[1] King Saud Univ, Dept Zool, Fac Sci, Riyadh 11451, Saudi Arabia
[2] Ram Manohar Lohiya Inst Med Sci, Lucknow, Uttar Pradesh, India
[3] King Saud Univ, King Abdullah Inst Nanotechnol, Fac Sci, Riyadh 11451, Saudi Arabia
[4] King Saud Univ, Transmiss Elect Microscope Unit, Res Ctr, Cent Lab,Coll Sci, Riyadh 11451, Saudi Arabia
[5] King Saud Univ, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
来源
INTERNATIONAL JOURNAL OF NANOMEDICINE | 2013年 / 8卷
关键词
zinc oxide nanoparticles; oxidative stress; apoptosis; DNA damage; ZNO NANOPARTICLES; MANUFACTURED NANOPARTICLES; TOXICITY; ASSAY; REPAIR;
D O I
10.2147/IJN.S42028
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The widespread use of zinc oxide (ZnO) nanoparticles worldwide exposes humans to their adverse effects, so it is important to understand their biological effects and any associated risks. This study was designed to investigate the cytotoxicity, oxidative stress, and apoptosis caused by ZnO nanoparticles in human skin melanoma (A375) cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] and lactate dehydrogenase-based cell viability assays showed a significant decrease in cell viability after exposure to ZnO nanoparticles, and phase contrast images revealed that cells treated with these nanoparticles had a lower density and a rounded morphology. ZnO nanoparticles were also found to induce oxidative stress, evidenced by generation of reactive oxygen species and depletion of the antioxidant, glutathione. Induction of apoptosis was confirmed by chromosomal condensation assay and caspase-3 activation. Further, more DNA damage was observed in cells exposed to the highest concentration of ZnO nanoparticles. These results demonstrate that ZnO nanoparticles have genotoxic potential in A375 cells, which may be mediated via oxidative stress. Our short-term exposure study showing induction of a genotoxic and apoptotic response to ZnO nanoparticles needs further investigation to determine whether there may be consequences of long-term exposure to ZnO nanoparticles.
引用
收藏
页码:983 / 993
页数:11
相关论文
共 41 条
[1]   UVA-induced cyototoxicity and DNA damaging potential of benz (e) acephenanthrylene [J].
Ali, Daoud ;
Ray, R. S. ;
Hans, R. K. .
TOXICOLOGY LETTERS, 2010, 199 (02) :193-200
[2]   THE EFFECT OF VARIOUS ANTIOXIDANTS AND OTHER MODIFYING AGENTS ON OXYGEN-RADICAL-GENERATED DNA-DAMAGE IN HUMAN-LYMPHOCYTES IN THE COMET ASSAY [J].
ANDERSON, D ;
YU, TW ;
PHILLIPS, BJ ;
SCHMEZER, P .
MUTATION RESEARCH, 1994, 307 (01) :261-271
[3]   Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism [J].
Bai, Wei ;
Zhang, Zhiyong ;
Tian, Wenjing ;
He, Xiao ;
Ma, Yuhui ;
Zhao, Yuliang ;
Chai, Zhifang .
JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (05) :1645-1654
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility [J].
Brunner, Tobias J. ;
Wick, Peter ;
Manser, Pius ;
Spohn, Philipp ;
Grass, Robert N. ;
Limbach, Ludwig K. ;
Bruinink, Arie ;
Stark, Wendelin J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (14) :4374-4381
[6]   Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish [J].
Choi, Ji Eun ;
Kim, Soohee ;
Ahn, Jin Hee ;
Youn, Pilju ;
Kang, Jin Seok ;
Park, Kwangsik ;
Yi, Jongheop ;
Ryu, Doug-Young .
AQUATIC TOXICOLOGY, 2010, 100 (02) :151-159
[7]   Nanosized zinc oxide particles induce neural stem cell apoptosis [J].
Deng, Xiaoyong ;
Luan, Qixia ;
Chen, Wenting ;
Wang, Yanli ;
Wu, Minghong ;
Zhang, Haijiao ;
Jiao, Zheng .
NANOTECHNOLOGY, 2009, 20 (11)
[8]   Hypoxia-reoxygenation-induced mitochondrial damage and apoptosis in human endothelial cells are inhibited by vitamin C [J].
Dhar-Mascareño, M ;
Cárcamo, JM ;
Golde, DW .
FREE RADICAL BIOLOGY AND MEDICINE, 2005, 38 (10) :1311-1322
[9]   Nanomaterials: A challenge for toxicologists [J].
Dhawan, Alok ;
Sharma, Vyom ;
Parmar, Devendra .
NANOTOXICOLOGY, 2009, 3 (01) :1-9
[10]   THE ORIGINS OF DNA BREAKS - A CONSEQUENCE OF DNA DAMAGE, DNA-REPAIR, OR APOPTOSIS [J].
EASTMAN, A ;
BARRY, MA .
CANCER INVESTIGATION, 1992, 10 (03) :229-240