Kaolinite stabilized paraffin composite phase change materials for thermal energy storage

被引:102
作者
Li, Chuanchang [1 ]
Fu, Liangjie [1 ,2 ]
Ouyang, Jing [1 ,2 ]
Tang, Aidong [3 ]
Yang, Huaming [1 ,2 ,4 ]
机构
[1] Cent S Univ, Sch Minerals Proc & Bioengn, Ctr Mineral Mat, Changsha 410083, Hunan, Peoples R China
[2] Cent S Univ, Key Lab Mineral Mat & Applicat Hunan Prov, Changsha 410083, Hunan, Peoples R China
[3] Cent S Univ, Sch Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[4] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
关键词
Thermal energy storage; Paraffin; Kaolinite; Crystallinity; Atomic-level schematic; ACID/EXPANDED PERLITE COMPOSITE; NANOTUBE COMPOSITE; ACID ACTIVATION; CONDUCTIVITY; HEXADECYLAMINE; RELIABILITY; SMECTITE; SPACE;
D O I
10.1016/j.clay.2015.07.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Three kinds of kaolinites (platelet, PKaol; layered, LKaol; and rod, RKaol) were used to stabilize paraffin to prepare PKaol/paraffin, LKaol/paraffin, and RKaol/paraffin composites. The effects of kaolinite microstructure on the thermal storage properties of the composites were investigated in detail. It was found that the crystallinity of the paraffin in the composites increased when the proportion of kaolinite pores that are smaller than 5 nm decreased; the pore size also affected the transfer of the heat within the paraffin in the region near the kaolinite. The paraffin in LKaol/paraffin composite showed higher crystallinity (F-c, 98.4%) and greater effective energy storage per unit mass (E-ef, 215.6 J.g(-1)) than that in the two other composites, indicating that most of the paraffin can contribute to energy storage. This is probably because the LKaol pore structure is more suitable for supporting phase change materials (PCM). This also led to less phonon scattering and therefore a larger phonon mean free path for paraffin in this composite, and a higher thermal conductivity (0.78 W.m(-1).K-1). Furthermore, the effect of nanopore confinement within the composites was elucidated at the atomic level. The as-prepared PCM have potential for application in solar thermal energy storage and solar heating. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:212 / 220
页数:9
相关论文
共 58 条
[1]   Curbing global warming with phase change materials for energy storage [J].
Anisur, M. R. ;
Mahfuz, M. H. ;
Kibria, M. A. ;
Saidur, R. ;
Metselaar, I. H. S. C. ;
Mahlia, T. M. I. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 18 :23-30
[2]  
[Anonymous], SHANXI SHIFAN DAXUE
[3]   State of the art of thermal storage for demand-side management [J].
Arteconi, A. ;
Hewitt, N. J. ;
Polonara, F. .
APPLIED ENERGY, 2012, 93 :371-389
[4]   Hyperbranched polyurethane as novel solid-solid phase change material for thermal energy storage [J].
Cao, Qi ;
Liu, Pengsheng .
EUROPEAN POLYMER JOURNAL, 2006, 42 (11) :2931-2939
[5]   Ultra-low thermal conductivity in W/Al2O3 nanolaminates [J].
Costescu, RM ;
Cahill, DG ;
Fabreguette, FH ;
Sechrist, ZA ;
George, SM .
SCIENCE, 2004, 303 (5660) :989-990
[6]   Structural, textural and protein adsorption properties of kaolinite and surface modified kaolinite adsorbents [J].
Duarte-Silva, R. ;
Villa-Garcia, M. A. ;
Rendueles, M. ;
Diaz, M. .
APPLIED CLAY SCIENCE, 2014, 90 :73-80
[7]   The effects of capillary forces on the axisymmetric propagation of two-phase, constant-flux gravity currents in porous media [J].
Golding, Madeleine J. ;
Huppert, Herbert E. ;
Neufeld, Jerome A. .
PHYSICS OF FLUIDS, 2013, 25 (03)
[8]   Ordering up the minimum thermal conductivity of solids [J].
Goodson, K. E. .
SCIENCE, 2007, 315 (5810) :342-343
[9]  
Goyanes SN, 1999, J APPL POLYM SCI, V72, P1379, DOI 10.1002/(SICI)1097-4628(19990613)72:11<1379::AID-APP1>3.0.CO
[10]  
2-4