Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks

被引:1993
作者
Oquab, Maxime [1 ]
Bottou, Leon [2 ]
Laptev, Ivan [1 ]
Sivic, Josef [1 ]
机构
[1] INRIA, Paris, France
[2] MSR, New York, NY USA
来源
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2014年
关键词
D O I
10.1109/CVPR.2014.222
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNN) have recently shown outstanding image classification performance in the large-scale visual recognition challenge (ILSVRC2012). The success of CNNs is attributed to their ability to learn rich mid-level image representations as opposed to hand-designed low-level features used in other image classification methods. Learning CNNs, however, amounts to estimating millions of parameters and requires a very large number of annotated image samples. This property currently prevents application of CNNs to problems with limited training data. In this work we show how image representations learned with CNNs on large-scale annotated datasets can be efficiently transferred to other visual recognition tasks with limited amount of training data. We design a method to reuse layers trained on the ImageNet dataset to compute mid-level image representation for images in the PASCAL VOC dataset. We show that despite differences in image statistics and tasks in the two datasets, the transferred representation leads to significantly improved results for object and action classification, outperforming the current state of the art on Pascal VOC 2007 and 2012 datasets. We also show promising results for object and action localization.
引用
收藏
页码:1717 / 1724
页数:8
相关论文
共 50 条
  • [41] Image interpolation using convolutional neural networks with deep recursive residual learning
    Kwok-Wai Hung
    Kun Wang
    Jianmin Jiang
    Multimedia Tools and Applications, 2019, 78 : 22813 - 22831
  • [42] Deep learning of human posture image classification using convolutional neural networks
    Rababaah, Aaron Rasheed
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2022, 15 (03) : 273 - 288
  • [43] A VLSI architecture suitable for mid-level image processing
    Dessbesell, Gustavo F.
    Pacheco, Marcio A.
    Martins, Joao B. dos S.
    Molz, Rolf Fredi
    2008 4TH SOUTHERN CONFERENCE ON PROGRAMMABLE LOGIC, PROCEEDINGS, 2008, : 87 - +
  • [44] Image style transfer using convolutional neural networks based on transfer learning
    Gupta, Varun
    Sadana, Rajat
    Moudgil, Swastikaa
    International Journal of Computational Systems Engineering, 2019, 5 (01) : 53 - 60
  • [45] Time Series Classification Using Federated Convolutional Neural Networks and Image-Based Representations
    Silva, Felipe A. R.
    Orang, Omid
    Javier Erazo-Costa, Fabricio
    Silva, Petronio C. L.
    Barros, Pedro H.
    Ferreira, Ricardo P. M.
    Gadelha Guimaraes, Frederico
    IEEE ACCESS, 2025, 13 : 56180 - 56194
  • [46] IMAGE CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS AND KERNEL EXTREME LEARNING MACHINES
    Li, Zhuangzi
    Zhu, Xiaobin
    Wang, Lei
    Guo, Peiyu
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3009 - 3013
  • [47] Hyperspectral Image Classification Using Convolutional Neural Networks and Multiple Feature Learning
    Gao, Qishuo
    Lim, Samsung
    Jia, Xiuping
    REMOTE SENSING, 2018, 10 (02)
  • [48] AttriNet: Learning Mid-Level Features for Human Activity Recognition with Deep Belief Networks
    Nair, Harideep
    Tan, Cathy
    Zeng, Ming
    Mengshoel, Ole J.
    Shen, John Paul
    UBICOMP/ISWC'19 ADJUNCT: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2019 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2019, : 510 - 517
  • [49] Transfer of perceptual learning in mid-level visual processing
    McGovern, David P.
    Webb, Ben S.
    Peirce, Jonathan W.
    PERCEPTION, 2009, 38 (04) : 621 - 621
  • [50] BRIEF-Based Mid-Level Representations for Time Series Classification
    Souza, Renato
    Almeida, Raquel
    Miranda, Roberto
    do Patrocinio, Zenilton Kleber G., Jr.
    Malinowski, Simon
    Guimaraes, Silvio Jamil F.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS (CIARP 2019), 2019, 11896 : 449 - 457