Machine learning based prediction of metal hydrides for hydrogen storage, part II : Prediction of material class

被引:59
作者
Rahnama, Alireza [1 ]
Zepon, Guilherme [2 ]
Sridhar, Seetharaman [1 ,3 ]
机构
[1] Ai Garismo, 1 Sandover House,124 Spa Rd, London SE16 3FD, England
[2] Univ Fed Sao Carlos, Dept Mat Engn, Rod Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil
[3] Colorado Sch Mines, George S Ansell Dept Met & Mat Engn, Golden, CO 80401 USA
关键词
Machine-learning; Artificial intelligence; Metal hydrides; Hydrogen storage; V-CONTENT; ALLOYS;
D O I
10.1016/j.ijhydene.2019.01.264
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The openly available dataset on hydrogen storage materials provided by the US Department of Energy was used to predict the optimal materials class of metal hydrides based on the desired properties, which included hydrogen-weight percent, heat of formation and operating temperature and pressure. We performed correlation and statistical analyses to investigate the statistical characteristics of each numeric features. We employed four classification algorithms: multiclass logistic regression, multiclass decision forest, multiclass decision jungle and multiclass neural network. Feature importance analysis was carried out to investigate how each classifier utilises the information available in the dataset. In overall, multiclass neural network classifier had better classification performance obtaining an accuracy of 0.80. The results suggest that the complex material class, followed by Mg is applicable for the most wide range of operating temperatures. Positive correlation was found between hydrogen weight percent, heat of formation and temperature, suggesting that the maximum hydrogen weight percent would be achieved in the complex material class operated at a high temperature. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7345 / 7353
页数:9
相关论文
共 22 条
[1]   Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system [J].
Dashti, Amir ;
Harami, Hossein Riasat ;
Rezakazemi, Mashallah .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (13) :6614-6624
[2]  
DeValladares MR, 2011, 4 WORLD HYDR TECHN C, P1
[3]   Hydrogen storage in magnesium-based hydrides and hydride composites [J].
Dornheim, M. ;
Doppiu, S. ;
Barkhordarian, G. ;
Boesenberg, U. ;
Klassen, T. ;
Gutfleisch, O. ;
Bormann, R. .
SCRIPTA MATERIALIA, 2007, 56 (10) :841-846
[4]  
Fukai Y., 2005, The metal-hydrogen system: basic bulk properties, V21
[5]   Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS) [J].
Kunce, I. ;
Polanski, M. ;
Bystrzycki, J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (27) :12180-12189
[6]   Effects of V content on hydrogen storage properties of V-Ti-Cr alloys with high desorption pressure [J].
Kuriiwa, Takahiro ;
Maruyama, Takahiro ;
Kamegawa, Atsunori ;
Okada, Masuo .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (17) :9082-9087
[7]   Ti-V-Cr b.c.c. alloys with high protium content [J].
Okada, M ;
Kuriiwa, T ;
Tamura, T ;
Takamura, H ;
Kamegawa, A .
JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 330 :511-516
[8]   High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds [J].
Oliynyk, Anton O. ;
Antono, Erin ;
Sparks, Taylor D. ;
Ghadbeigi, Leila ;
Gaultois, Michael W. ;
Meredig, Bryce ;
Mar, Arthur .
CHEMISTRY OF MATERIALS, 2016, 28 (20) :7324-7331
[9]   Complex hydrides for hydrogen storage [J].
Orimo, Shin-ichi ;
Nakamori, Yuko ;
Eliseo, Jennifer R. ;
Zuettel, Andreas ;
Jensen, Craig M. .
CHEMICAL REVIEWS, 2007, 107 (10) :4111-4132
[10]   The influences of V content on hydrogen storage properties in low vanadium Ti-V-Cr alloy [J].
Pei Pei ;
Song Xiping ;
Zhao Ming ;
Zhang Peilong ;
Chen Guoliang .
RARE METAL MATERIALS AND ENGINEERING, 2008, 37 (08) :1419-1423