Evaluation of Additively Manufactured Microchannel Heat Sinks

被引:43
作者
Collins, Ivel L. [1 ,2 ]
Weibel, Justin A. [1 ,2 ]
Pan, Liang [1 ,2 ]
Garimella, Suresh V. [1 ,2 ]
机构
[1] Purdue Univ, Cooling Technol Res Ctr, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
来源
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY | 2019年 / 9卷 / 03期
基金
美国国家科学基金会;
关键词
Additive manufacturing (AM); direct metal laser sintering (DMLS); microchannel heat exchanger; microchannel heat sink; power electronics; 3-DIMENSIONAL NUMERICAL OPTIMIZATION; PERFORMANCE; FRICTION; WATER; FLOW;
D O I
10.1109/TCPMT.2018.2866972
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Microchannel heat sinks allow the removal of dense heat loads from high-power electronic devices at modest chip temperature rises. Such heat sinks are produced primarily using conventional subtractive machining techniques or anisotropic chemical etching, which restricts the geometric features that can be produced. Owing to their layer-by-layer and direct-write approaches, additive manufacturing (AM) technologies enable more design-driven construction flexibility and offer improved geometric freedom. Various AM processes and materials are available, but their capability to produce features desirable for microchannel heat sinks has received a limited assessment. Following a survey of commercially mature AM techniques, direct metal laser sintering was used in this paper to produce both straight and manifold microchannel designs with hydraulic diameters of 500 mu m in an aluminum alloy (AlSi10Mg). Thermal and hydraulic performances were characterized over a range of mass fluxes from 500 to 2000 kg/m(2)s using water as the working fluid. The straight microchannel design allows these experimental results to be directly compared against widely accepted correlations from the literature. The manifold design demonstrates a more complex geometry that offers a reduced pressure drop. A comparison of the measured and predicted performance confirms that the nominal geometry is reproduced accurately enough to predict pressure drop based on conventional hydrodynamic theory, albeit with roughness-induced early transition to turbulence; however, the material properties are not known with sufficient accuracy to allow for a priori thermal design. New design guidelines are needed to exploit the benefits of AM while avoiding undesired or unanticipated performance impacts.
引用
收藏
页码:446 / 457
页数:12
相关论文
共 50 条
  • [21] Hotspot Analysis of Double-Layer Microchannel Heat Sinks
    Ansari, Danish
    Kim, Kwang-Yong
    HEAT TRANSFER ENGINEERING, 2019, 40 (15) : 1221 - 1238
  • [22] Numerical study on heat transfer and flow characteristics of novel microchannel heat sinks
    Sun, Li
    Li, Juan
    Xu, Hao
    Ma, Jie
    Peng, Hao
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 176
  • [23] Optimization of permeable membrane microchannel heat sinks for additive manufacturing
    Ozguc, Serdar
    Pan, Liang
    Weibel, Justin A.
    APPLIED THERMAL ENGINEERING, 2021, 198
  • [24] A comprehensive review of thermal enhancement techniques in microchannel heat exchangers and heat sinks
    Dwivedi, Akash
    Khan, Mohammad Mohsin
    Pali, Harveer Singh
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (23) : 13189 - 13231
  • [25] A comprehensive review of thermal enhancement techniques in microchannel heat exchangers and heat sinks
    Akash Dwivedi
    Mohammad Mohsin Khan
    Harveer Singh Pali
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 13189 - 13231
  • [26] Optimization of triangular microchannel heat sinks using constructal theory
    Mardani, Moloud
    Salimpour, Mohammad Reza
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2016, 30 (10) : 4757 - 4764
  • [27] Performance evaluation and optimization of flattened microchannel heat sinks for the electronic cooling application
    Ayatollahi, S. M.
    Ahmadpour, A.
    Hajmohammadi, M. R.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (04) : 3267 - 3281
  • [28] Parametric study and optimization of microchannel heat sinks with various shapes
    Kose, Haluk Anil
    Yildizeli, Alperen
    Cadirci, Sertac
    APPLIED THERMAL ENGINEERING, 2022, 211
  • [29] Influence of geometrical parameters of hexagonal, circular, and rhombus microchannel heat sinks on the thermohydraulic characteristics
    Alfaryjat, A. A.
    Mohammed, H. A.
    Adam, Nor Mariah
    Ariffin, M. K. A.
    Najafabadi, M. I.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2014, 52 : 121 - 131
  • [30] Topology Optimization of Manifold Microchannel Heat Sinks
    Zhou, Yuqing
    Nomura, Tsuyoshi
    Dede, Ercan M.
    PROCEEDINGS OF THE NINETEENTH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM 2020), 2020, : 740 - 746