On Two Congruences Involving Apery and Franel Numbers

被引:6
作者
Mao, Guo-Shuai [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruences; Apery numbers; Franel numbers; Jacobi symbol; CONJECTURES; PROOF; SUMS; SUN;
D O I
10.1007/s00025-020-01291-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly prove a congruence conjecture of Z.-W. Sun involving Franel numbers: For any prime p > 3, we have Sigma(p-1)(k=0)(-1)(k) f(k) equivalent to (p/3) + 2p(2)/3B(p-2) (1/3) (mod p(3)), where B-n(x) is the n-th Bernoulli polynomial.
引用
收藏
页数:12
相关论文
共 20 条
[1]  
[Anonymous], 1972, COMBINATORIAL IDENTI
[2]   ANOTHER CONGRUENCE FOR THE APERY NUMBERS [J].
BEUKERS, F .
JOURNAL OF NUMBER THEORY, 1987, 25 (02) :201-210
[3]   CONGRUENCE PROPERTIES OF APERY NUMBERS [J].
CHOWLA, S ;
COWLES, J ;
COWLES, M .
JOURNAL OF NUMBER THEORY, 1980, 12 (02) :188-190
[4]   SOME CONGRUENCES FOR APERY NUMBERS [J].
GESSEL, I .
JOURNAL OF NUMBER THEORY, 1982, 14 (03) :362-368
[5]   Some congruences related to a congruence of Van Hamme [J].
Guo, Victor J. W. ;
Liu, Ji-Cai .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (03) :221-231
[6]   Proof of two conjectures of Sun on congruences for Franel numbers [J].
Guo, Victor J. W. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (07) :532-539
[7]   Proof of some conjectures of Z.-W. Sun on congruences for Apery polynomials [J].
Guo, Victor J. W. ;
Zeng, Jiang .
JOURNAL OF NUMBER THEORY, 2012, 132 (08) :1731-1740
[8]   Supercongruences for the Catalan-Larcombe-French numbers [J].
Jarvis, Frazer ;
Verrill, Helena A. .
RAMANUJAN JOURNAL, 2010, 22 (02) :171-186
[9]   On two congruences involving Franel numbers [J].
Liu, Ji-Cai .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
[10]   Congruences for central binomial sums and finite polylogarithms [J].
Mattarei, Sandro ;
Tauraso, Roberto .
JOURNAL OF NUMBER THEORY, 2013, 133 (01) :131-157