Relevant sampling in finitely generated shift-invariant spaces

被引:32
作者
Fuehr, Hartmut [1 ]
Xian, Jun [2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math, D-52056 Aachen, Germany
[2] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Random sampling; Relevant sampling; Shift-invariant spaces; SPHEROIDAL WAVE-FUNCTIONS; FOURIER-ANALYSIS; RECONSTRUCTION; UNCERTAINTY; THEOREMS;
D O I
10.1016/j.jat.2018.09.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider random sampling in finitely generated shift-invariant spaces V(Phi) subset of L-2(R-n) generated by a vector Phi = (phi(1,...,)phi(r)) is an element of (L-2(R-n))(r). Following the approach introduced by Bass and GrOchenig, we consider certain relatively compact subsets V-R,(delta)(Phi) of such a space, defined in terms of a concentration inequality with respect to a cube with side lengths R. Under very mild assumptions on the generators, we show that for R sufficiently large, taking O(R(n)log(R)) many random samples (taken independently uniformly distributed within C-R) yields a sampling set for V-R,(delta)(Phi) with high probability. We give explicit estimates of all involved constants in terms of the generators phi(1),...,phi. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 21 条
[1]   Nonuniform average sampling and reconstruction in multiply generated shift-invariant spaces [J].
Aldroubi, A ;
Sun, QY ;
Tang, WS .
CONSTRUCTIVE APPROXIMATION, 2004, 20 (02) :173-189
[2]   Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces [J].
Aldroubi, A ;
Gröchenig, K .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2000, 6 (01) :93-103
[3]   Nonuniform sampling and reconstruction in shift-invariant spaces [J].
Aldroubi, A ;
Gröchenig, K .
SIAM REVIEW, 2001, 43 (04) :585-620
[4]   Random sampling of multivariate trigonometric polynomials [J].
Bass, RF ;
Gröcheng, K .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (03) :773-795
[5]   RELEVANT SAMPLING OF BAND-LIMITED FUNCTIONS [J].
Bass, Richard F. ;
Groechenig, Karlheinz .
ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (01) :43-58
[6]   Random sampling of bandlimited functions [J].
Bass, Richard F. ;
Groechenig, Karlheinz .
ISRAEL JOURNAL OF MATHEMATICS, 2010, 177 (01) :1-28
[7]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[8]   Monte Carlo Non-Local Means: Random Sampling for Large-Scale Image Filtering [J].
Chan, Stanley H. ;
Zickler, Todd ;
Lu, Yue M. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (08) :3711-3725
[9]  
Cucker F, 2002, B AM MATH SOC, V39, P1
[10]   Compressed Sensing of Analog Signals in Shift-Invariant Spaces [J].
Eldar, Yonina C. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (08) :2986-2997