Protein stabilization by specific binding of guanidinium to a functional arginine-binding surface on an SH3 domain

被引:45
作者
Zarrine-Afsar, A
Mittermaier, A
Kay, LE
Davidson, AR
机构
[1] Univ Toronto, Dept Mol & Med Genet, Toronto, ON M5S 1A8, Canada
[2] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada
[3] Univ Toronto, Dept Chem, Toronto, ON M5S 1A8, Canada
关键词
SH3; domain; protein folding kinetics; guanidinium-induced protein stabilization; peptide binding; arginine-protein interaction; specific guanidinium binding;
D O I
10.1110/ps.051829106
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Guanidinium hydrochloride (GuHCl) at low concentrations significantly stabilizes the Fyn SH3 domain. In this work, we have demonstrated that this stabilizing effect is manifested through a dramatic (five- to sixfold) decrease in the unfolding rate of the domain with the folding rate being affected minimally. This behavior contrasts to the effect of NaCl, which stabilizes this domain by accelerating the folding rate. These data imply that the stabilizing effect of GuHCl is not predominantly ionic in nature. Through NMR studies, we have identified a specific binding site for guanidinium, and we have determined a dissociation constant of 90 mM for this interaction. The guanidinium-binding site overlaps with a functionally important arginine-binding pocket on the domain surface, and we have shown that GuHCl is a specific inhibitor of the peptide-binding activity of the domain. A different SH3 domain possessing a similar arginine-binding pocket is also thermodynamically stabilized by GuHCl. These data suggest that many proteins that normally interact with arginine-containing ligands may also be able to specifically interact with guanidinium. Thus, some caution should be used when using GuHCl as a denaturant in protein folding studies. Since arginine-mediated interactions are often important in the energetics of protein-protein interactions, our observations could be relevant for the design of small molecule inhibitors of protein-protein interactions.
引用
收藏
页码:162 / 170
页数:9
相关论文
共 33 条
[1]   Protein stabilization by urea and guanidine hydrochloride [J].
Bhuyan, AK .
BIOCHEMISTRY, 2002, 41 (45) :13386-13394
[2]   Anatomy of hot spots in protein interfaces [J].
Bogan, AA ;
Thorn, KS .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (01) :1-9
[3]   Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process [J].
Collins, KD .
METHODS, 2004, 34 (03) :300-311
[4]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293
[5]   Dramatic acceleration of protein folding by stabilization of a nonnative backbone conformation [J].
Di Nardo, AA ;
Korzhnev, DM ;
Stogios, PJ ;
Zarrine-Afsar, A ;
Kay, LE ;
Davidson, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (21) :7954-7959
[6]   The effect of denaturants on protein structure [J].
Dunbar, J ;
Yennawar, HP ;
Banerjee, S ;
Luo, JB ;
Farber, GK .
PROTEIN SCIENCE, 1997, 6 (08) :1727-1733
[7]  
Efron B, 1986, STAT SCI, V1, P54, DOI [DOI 10.1214/SS/1177013815, 10.1214/ss/1177013815]
[8]   Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1 - Structural and functional analysis [J].
Fazi, B ;
Cope, MJTV ;
Douangamath, A ;
Ferracuti, S ;
Schirwitz, K ;
Zucconi, A ;
Drubin, DG ;
Wilmanns, M ;
Cesareni, G ;
Castagnoli, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (07) :5290-5298
[9]   Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands [J].
Feng, SB ;
Kasahara, C ;
Rickles, RJ ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (26) :12408-12415
[10]   Principles of protein-protein interactions [J].
Jones, S ;
Thornton, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (01) :13-20