A modified transfer matrix method for the study of the bending vibration band structure in phononic crystal Euler beams

被引:79
作者
Han, Lin [1 ]
Zhang, Yan [1 ]
Ni, Zhi-Qiang [1 ]
Zhang, Zi-Ming [1 ]
Jiang, Lin-Hua [1 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Nanjing 210098, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Phononic crystal; Euler beam; Modified transfer matrix method; Band structure; LOCALLY RESONANT STRUCTURES; ACOUSTIC-WAVES; PERIODIC STRUCTURES; GAPS; PROPAGATION; COMPOSITES; PIPE; SCATTERING; LATTICES; FLUID;
D O I
10.1016/j.physb.2012.08.022
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We introduce a modified transfer matrix (MTM) method for the calculation of the bending vibration band structure of one-dimensional phononic crystal (PC) Euler beams. A particular combination of hyperbolic functions and triangular functions is introduced to transform the state parameters of the transfer matrix (TM) method into four initial parameters, which have the explicit meanings of the displacement, rotation angle, bending moment and shear force at one beam end. The method is used to calculate the band structures of two PC Euler beams constructed from aluminum-Lucite and 100 kinds of materials respectively. The effectiveness and high efficiency of the MTM method are demonstrated by the results. Several advantages make it a proper choice for the calculation of the bending vibration band structure of PC Euler beams. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:4579 / 4583
页数:5
相关论文
共 33 条
[1]   Study on band gaps of elastic waves propagating in one-dimensional disordered phononic crystals [J].
Chen, A. -Li ;
Wang, Yue-Sheng .
PHYSICA B-CONDENSED MATTER, 2007, 392 (1-2) :369-378
[2]   Band gap control of phononic beam with negative capacitance piezoelectric shunt [J].
Chen Sheng-Bing ;
Wen Ji-Hong ;
Yu Dian-Long ;
Wang Gang ;
Wen Xi-Sen .
CHINESE PHYSICS B, 2011, 20 (01)
[3]  
Clough RW, 1995, DYNAMICS STRUCTURES, V3rd
[4]   Theory and experiments on elastic band gaps [J].
García-Pablos, D ;
Sigalas, M ;
de Espinosa, FRM ;
Torres, M ;
Kafesaki, M ;
García, N .
PHYSICAL REVIEW LETTERS, 2000, 84 (19) :4349-4352
[5]  
Jensen J.S., 2002, P 15 NORD SEM COMP M, P63
[6]   Multiple-scattering theory for three-dimensional periodic acoustic composites [J].
Kafesaki, M ;
Economou, EN .
PHYSICAL REVIEW B, 1999, 60 (17) :11993-12001
[7]   Complete band gaps in two-dimensional phononic crystal slabs [J].
Khelif, A. ;
Aoubiza, B. ;
Mohammadi, S. ;
Adibi, A. ;
Laude, V. .
PHYSICAL REVIEW E, 2006, 74 (04)
[8]   ACOUSTIC BAND-STRUCTURE OF PERIODIC ELASTIC COMPOSITES [J].
KUSHWAHA, MS ;
HALEVI, P ;
DOBRZYNSKI, L ;
DJAFARIROUHANI, B .
PHYSICAL REVIEW LETTERS, 1993, 71 (13) :2022-2025
[9]   ANALYSIS OF THE PROPAGATION OF PLANE ACOUSTIC-WAVES IN PASSIVE PERIODIC MATERIALS USING THE FINITE-ELEMENT METHOD [J].
LANGLET, P ;
HLADKYHENNION, AC ;
DECARPIGNY, JN .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1995, 98 (05) :2792-2800
[10]   Finite Element Method for Analysis of Band Structures of Three Dimensonal Phononic Crystals [J].
Li, Jianbao ;
Wang, Yue-Sheng ;
Zhang, Chuanzeng .
2008 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4 AND APPENDIX, 2008, :1468-+