Multiple solutions for elliptic equations at resonance

被引:3
作者
Pisani, L [1 ]
机构
[1] Univ Bari, Dipartimento Interuniv Matemat, I-70125 Bari, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2001年 / 8卷 / 04期
关键词
asymptotically linear elliptic equations; resonance at infinity; multiple solutions; critical points of even functionals;
D O I
10.1007/PL00001454
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an asymptotically linear elliptic equation at resonance, with an odd nonlinearity. By a penalization technique and suitable min-max theorems (which give Morse index estimates), we prove the existence of N-1 pairs of non trivial solutions, where N is, roughly speaking, the difference between the Morse indexes at zero and at infinity.
引用
收藏
页码:389 / 398
页数:10
相关论文
共 11 条
[1]  
Amann H., 1980, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V7, P539
[2]  
AMBROSETTI A, 1973, J FUNCT ANAL, V14, P449
[3]  
BAHRI A, 1985, CR ACAD SCI I-MATH, V301, P145
[4]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[5]  
BENCI V, 1994, NONLINEAR DIFFERENTI, V1, P267
[6]  
Chang K. C., 1993, INFINITE DIMENSIONAL, DOI DOI 10.1007/978-1-4612-0385-8
[7]   VARIANT OF LUSTERNIK-SCHNIRELMAN THEORY [J].
CLARK, DC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 22 (01) :65-&
[8]  
DECANDIA A, 1985, REND IST MATEM U TRI, V17, P30
[9]  
Ghoussoub N., 1993, DUALITY PERTURBATION
[10]   Asymptotically linear elliptic problems at resonance. [J].
Masiello, A ;
Pisani, L .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1996, 171 :1-13