Generation of solutions of the Hamilton-Jacobi equation

被引:0
作者
Torres del Castillo, G. F. [1 ]
机构
[1] Univ Autonoma Puebla, Inst Ciencias, Dept Fis Matemat, Puebla 72570, Pue, Mexico
关键词
Hamilton-Jacobi equation; canonical transformations; constants of motion;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that any function G(q(i),p(i),t), defined on the extended phase space, defines a one-parameter group of canonical transformations which act on any function f (q(i), t), in such a way that if G is a constant of motion then from a solution of the Hamilton-Jacobi (HJ) equation one obtains a one-parameter family of solutions of the same HJ equation. It is also shown that any complete solution of the HJ equation can be obtained in this manner by means of the transformations generated by n constants of motion in involution.
引用
收藏
页码:75 / 79
页数:5
相关论文
共 5 条
[1]  
Gantmacher F., 1975, LECT ANAL MECH
[2]  
del Castillo GFT, 2013, REV MEX FIS, V59, P478
[3]  
Torres del Castillo G.F., 2010, REV MEX FIS, V56, P113
[4]  
Torres del Castillo G.F., 2012, DIFFERENTIABLE MANIF
[5]  
Whittaker E. T., 1993, TREATISE ANAL DYNAMI