Non-vacuum synthesis of CZTS by sulphurization of electrochemically layered zinc and tin on copper

被引:3
作者
Indubala, E. [1 ,2 ]
Sneha, N. [3 ]
Sudha, V [2 ]
Harinipriya, S. [1 ]
机构
[1] SRM Inst Sci & Technol, SRM Res Inst, Electrochem Syst Lab, Kattankulathur 603203, India
[2] SRM Inst Sci & Technol, Dept Chem, Kattankulathur 603203, India
[3] SRM Inst Sci & Technol, Dept Chem Engn, Kattankulathur 603203, India
关键词
Electrochemical; Non-vacuum; Elemental sulphur; CZTS; CuZnSn alloy; Raman spectra; FILM SOLAR-CELLS; CU2ZNSNS4; THIN-FILMS; HYDROGEN EVOLUTION REACTION; WORK FUNCTION; DEPOSITION; ELECTRODEPOSITION; PRECURSORS;
D O I
10.1016/j.mssp.2019.05.027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sequential layering of Zn and Sn on Cu foil by electrolysis of appropriate salt solution is carried out. The layered metals are annealed at 350 degrees C to form Cu-Zn-Sn alloy. To the alloy, 30 g of (excess) elemental sulphur powder is added and sulphurized at 350 degrees, 450 degrees, 550 degrees and 650 degrees C. Structural, morphological, optical and electrochemical investigations revealed CZTS as favourable phase at all sulphurization temperatures. Electrochemical Impedance studies in conjunction with Raman spectroscopy indicated negligible secondary phases for CZTS-550 degrees C when compared to CZTS synthesized at other temperatures. For CZTS-550 degrees C, UV-vis DRS studies depicted 1.51 eV as band gap and high absorption coefficient of 10(5) cm(-1). Thus CZTS synthesized by the demonstrated procedure can be suitable for optoelectronic applications.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 61 条
[1]   A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell [J].
Ahmed, Shafaat ;
Reuter, Kathleen B. ;
Gunawan, Oki ;
Guo, Lian ;
Romankiw, Lubomyr T. ;
Deligianni, Hariklia .
ADVANCED ENERGY MATERIALS, 2012, 2 (02) :253-259
[2]  
[Anonymous], OPEN SURF SCI J
[3]  
Anuar K., 2009, SOLID STATE SCI TECH, V17, P226
[4]   Growth behavior of co-electrodeposited CZTS precursor thin films from acidic baths containing tartaric acid [J].
Beres, M. ;
Syzdek, J. ;
Yu, K. M. ;
Mao, S. S. .
MATERIALS CHEMISTRY AND PHYSICS, 2018, 204 :83-94
[5]  
Bicelli L. Peraldo, 1962, I LOMBARDO REND SC, V96, P98
[6]  
Bicelli L. Peraldo, 1963, I LOMBARDO REND SC, V97, P155
[7]   Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy [J].
Cheng, A-J ;
Manno, M. ;
Khare, A. ;
Leighton, C. ;
Campbell, S. A. ;
Aydil, E. S. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2011, 29 (05)
[8]   Self-catalytic solution-liquid-liquid-solid (SLLS) growth of tapered SnS nanorods [J].
Cho, Ki-Hyun ;
Sung, Yun-Mo .
NANOSCALE, 2013, 5 (09) :3690-3697
[9]   Electrodeposition of kesterite thin films for photovoltaic applications: Quo vadis? [J].
Colombara, D. ;
Crossay, A. ;
Vauche, L. ;
Jaime, S. ;
Arasimowicz, M. ;
Grand, P. -P. ;
Dale, P. J. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2015, 212 (01) :88-102
[10]   Synthesis and characterization of co-electroplated Cu2ZnSnS4 thin films as potential photovoltaic material [J].
Cui, Yanfeng ;
Zuo, Shaohua ;
Jiang, Jinchun ;
Yuan, Shengzhao ;
Chu, Junhao .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (08) :2136-2140