Vortex plume distribution in confined turbulent rotating convection

被引:13
作者
Kunnen, Rudie P. J. [1 ,2 ]
Corre, Yoann [1 ,2 ]
Clercx, Herman J. H. [1 ,2 ,3 ,4 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, Fluid Dynam Lab, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, JM Burgers Ctr Fluid Dynam, NL-5600 MB Eindhoven, Netherlands
[3] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[4] Univ Twente, JM Burgers Ctr Fluid Dynam, NL-7500 AE Enschede, Netherlands
关键词
RAYLEIGH-BENARD CONVECTION; LARGE-SCALE CIRCULATION; HEAT-TRANSPORT; FLOW STRUCTURE; LAYERS;
D O I
10.1209/0295-5075/104/54002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Vortical columns are key features of rapidly rotating turbulent Rayleigh-Benard convection. In this work we probe the structure of the sidewall boundary layers experimentally and show how they affect the spatial vortex distribution in a cylindrical cell. The cell has a diameter-to-height aspect ratio 1/2 and is operated at Rayleigh number 5.9 x 10(9) and Prandtl number 6.4. The vortices are detected using particle image velocimetry. We find that for inverse Rossby numbers 1/Ro greater than or similar to 3 (expressing the rotation rate in a dimensionless form) the sidewall boundary layer exhibits a rotation-dependent thickness and a characteristic radial profile in the root-mean-square azimuthal velocity with two peaks rather than a single peak typical for the non-rotating case. These properties point to Stewartson-type boundary layers, which can actually cover most of the domain for rotation rates just above the transition point. A zonal ordering of vortices into two azimuthal bands at moderate rotation rates 3 less than or similar to 1/Ro less than or similar to 7 can be attributed to the sidewall boundary layer. Additionally, we present experimental confirmation of the tendency of like-signed vortices to cluster on opposite sides of the cylinder for 1 less than or similar to 1/Ro less than or similar to 5. At higher rotation rates and away from the sidewall the vortices are nearly uniformly distributed. Copyright (C) EPLA, 2013
引用
收藏
页数:6
相关论文
共 29 条
[1]   Convection driven zonal flows and vortices in the major planets [J].
Busse, F. H. .
CHAOS, 1994, 4 (02) :123-134
[2]   The physical mechanism for vortex merging [J].
Cerretelli, C ;
Williamson, CHK .
JOURNAL OF FLUID MECHANICS, 2003, 475 :41-77
[3]   Model of Convective Taylor Columns in Rotating Rayleigh-Benard Convection [J].
Grooms, Ian ;
Julien, Keith ;
Weiss, Jeffrey B. ;
Knobloch, Edgar .
PHYSICAL REVIEW LETTERS, 2010, 104 (22)
[4]   Mean flow precession and temperature probability density functions in turbulent rotating convection [J].
Hart, JE ;
Kittelman, S ;
Ohlsen, DR .
PHYSICS OF FLUIDS, 2002, 14 (03) :955-962
[5]   Boundary layer control of rotating convection systems [J].
King, Eric M. ;
Stellmach, Stephan ;
Noir, Jerome ;
Hansen, Ulrich ;
Aurnou, Jonathan M. .
NATURE, 2009, 457 (7227) :301-304
[6]   The structure of sidewall boundary layers in confined rotating Rayleigh-Benard convection [J].
Kunnen, R. P. J. ;
Clercx, H. J. H. ;
van Heijst, G. J. F. .
JOURNAL OF FLUID MECHANICS, 2013, 727 :509-532
[7]   Vortex statistics in turbulent rotating convection [J].
Kunnen, R. P. J. ;
Clercx, H. J. H. ;
Geurts, B. J. .
PHYSICAL REVIEW E, 2010, 82 (03)
[8]   Experimental and numerical investigation of turbulent convection in a rotating cylinder [J].
Kunnen, R. P. J. ;
Geurts, B. J. ;
Clercx, H. J. H. .
JOURNAL OF FLUID MECHANICS, 2010, 642 :445-476
[9]   Enhanced Vertical Inhomogeneity in Turbulent Rotating Convection [J].
Kunnen, R. P. J. ;
Clercx, H. J. H. ;
Geurts, B. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (17)
[10]   Breakdown of large-scale circulation in turbulent rotating convection [J].
Kunnen, R. P. J. ;
Clercx, H. J. H. ;
Geurts, B. J. .
EPL, 2008, 84 (02)