A sharp trilinear inequality related to Fourier restriction on the circle

被引:16
作者
Carneiro, Emanuel [1 ]
Foschi, Damiano [2 ]
Oliveira e Silva, Diogo [3 ]
Thiele, Christoph [3 ]
机构
[1] Inst Nacl Matemat Pura & Aplicada, IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
[2] Univ Ferrara, Dipartimento Matemat & Informat, Via Macchiavelli 30, I-44121 Ferrara, Italy
[3] Univ Bonn, Hausdorff Ctr Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Circle; Fourier restriction; sharp inequalities; extremizers; convolution of surface measures; Bessel functions; STRICHARTZ INEQUALITIES; WAVE-EQUATION; MAXIMIZERS; EXISTENCE; EXTREMIZERS; MONOTONICITY;
D O I
10.4171/RMI/978
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a sharp trilinear inequality which is motivated by a program to obtain the sharp form of the L-2-L-6 Tomas-Stein adjoint restriction inequality on the circle. Our method uses intricate estimates for integrals of sixfold products of Bessel functions developed in a companion paper. We also establish that constants are local extremizers of the Tomas-Stein adjoint restriction inequality as well as of another inequality appearing in the program.
引用
收藏
页码:1463 / 1486
页数:24
相关论文
共 32 条
[1]   On sharp bilinear Strichartz estimates of Ozawa-Tsutsumi type [J].
Bennett, Jonathan ;
Bez, Neal ;
Jeavons, Chris ;
Pattakos, Nikolaos .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2017, 69 (02) :459-476
[2]   HEAT-FLOW MONOTONICITY OF STRICHARTZ NORMS [J].
Bennett, Jonathan ;
Bez, Neal ;
Carbery, Anthony ;
Hundertmark, Dirk .
ANALYSIS & PDE, 2009, 2 (02) :147-158
[3]   A SHARP SOBOLEV-STRICHARTZ ESTIMATE FOR THE WAVE EQUATION [J].
Bez, Neal ;
Jeavons, Chris .
ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2015, 22 :46-54
[4]   A sharp Strichartz estimate for the wave equation with data in the energy space [J].
Bez, Neal ;
Rogers, Keith M. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) :805-823
[5]  
Bulut A, 2010, DIFFER INTEGRAL EQU, V23, P1035
[6]   Some Sharp Restriction Inequalities on the Sphere [J].
Carneiro, Emanuel ;
Oliveira e Silva, Diogo .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, (17) :8233-8267
[7]   A Sharp Inequality for the Strichartz Norm [J].
Carneiro, Emanuel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (16) :3127-3145
[8]   On restricting Cauchy-Pexider functional equations to submanifolds [J].
Charalambides, Marcos .
AEQUATIONES MATHEMATICAE, 2013, 86 (03) :230-253
[9]  
Christ M, 2014, P AM MATH SOC, V142, P887
[10]   EXISTENCE OF EXTREMALS FOR A FOURIER RESTRICTION INEQUALITY [J].
Christ, Michael ;
Shao, Shuanglin .
ANALYSIS & PDE, 2012, 5 (02) :261-312