A sharp trilinear inequality related to Fourier restriction on the circle

被引:16
作者
Carneiro, Emanuel [1 ]
Foschi, Damiano [2 ]
Oliveira e Silva, Diogo [3 ]
Thiele, Christoph [3 ]
机构
[1] Inst Nacl Matemat Pura & Aplicada, IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
[2] Univ Ferrara, Dipartimento Matemat & Informat, Via Macchiavelli 30, I-44121 Ferrara, Italy
[3] Univ Bonn, Hausdorff Ctr Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Circle; Fourier restriction; sharp inequalities; extremizers; convolution of surface measures; Bessel functions; STRICHARTZ INEQUALITIES; WAVE-EQUATION; MAXIMIZERS; EXISTENCE; EXTREMIZERS; MONOTONICITY;
D O I
10.4171/RMI/978
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a sharp trilinear inequality which is motivated by a program to obtain the sharp form of the L-2-L-6 Tomas-Stein adjoint restriction inequality on the circle. Our method uses intricate estimates for integrals of sixfold products of Bessel functions developed in a companion paper. We also establish that constants are local extremizers of the Tomas-Stein adjoint restriction inequality as well as of another inequality appearing in the program.
引用
收藏
页码:1463 / 1486
页数:24
相关论文
共 32 条
  • [1] On sharp bilinear Strichartz estimates of Ozawa-Tsutsumi type
    Bennett, Jonathan
    Bez, Neal
    Jeavons, Chris
    Pattakos, Nikolaos
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2017, 69 (02) : 459 - 476
  • [2] HEAT-FLOW MONOTONICITY OF STRICHARTZ NORMS
    Bennett, Jonathan
    Bez, Neal
    Carbery, Anthony
    Hundertmark, Dirk
    [J]. ANALYSIS & PDE, 2009, 2 (02): : 147 - 158
  • [3] A SHARP SOBOLEV-STRICHARTZ ESTIMATE FOR THE WAVE EQUATION
    Bez, Neal
    Jeavons, Chris
    [J]. ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2015, 22 : 46 - 54
  • [4] A sharp Strichartz estimate for the wave equation with data in the energy space
    Bez, Neal
    Rogers, Keith M.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) : 805 - 823
  • [5] Bulut A, 2010, DIFFER INTEGRAL EQU, V23, P1035
  • [6] Some Sharp Restriction Inequalities on the Sphere
    Carneiro, Emanuel
    Oliveira e Silva, Diogo
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, (17) : 8233 - 8267
  • [7] A Sharp Inequality for the Strichartz Norm
    Carneiro, Emanuel
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (16) : 3127 - 3145
  • [8] On restricting Cauchy-Pexider functional equations to submanifolds
    Charalambides, Marcos
    [J]. AEQUATIONES MATHEMATICAE, 2013, 86 (03) : 230 - 253
  • [9] Christ M, 2014, P AM MATH SOC, V142, P887
  • [10] EXISTENCE OF EXTREMALS FOR A FOURIER RESTRICTION INEQUALITY
    Christ, Michael
    Shao, Shuanglin
    [J]. ANALYSIS & PDE, 2012, 5 (02): : 261 - 312