Evaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method

被引:6
作者
Surendran, M. [1 ]
Pramod, A. L. N. [2 ]
Natarajan, S. [2 ]
机构
[1] Struct Engn Res Ctr, CSIR, Chennai 600113, Tamil Nadu, India
[2] Indian Inst Technol Madras, Dept Mech Engn, Integrated Modelling & Simulat Lab, Chennai 600036, Tamil Nadu, India
关键词
Stress intensity factor; Singularity; Edge based smoothed finite element method; Scaled boundary finite element method; CELL METHOD; REPRESENTATION; GEOMETRY; CRACK; FEM;
D O I
10.22055/JACM.2018.24125.1172
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents a technique to evaluate the fracture parameters by combining the edge based smoothed finite element method (ESFEM) and the scaled boundary finite element method (SBFEM). A semi-analytical solution is sought in the region close to the vicinity of the crack tip using the SBFEM, whilst, the ESFEM is used for the rest of the domain. As both methods satisfy the partition of unity and the compatibility condition, the stiffness matrices obtained from both methods can be assembled as in the conventional finite element method. The stress intensity factors (SIFs) are computed directly from their definition. Numerical examples of linear elastic bodies with cracks are solved without requiring additional post-processing techniques. The SIFs computed using the proposed technique are in a good agreement with the reference solutions. A crack propagation study is also carried out with minimal local remeshing to show the robustness of the proposed technique. The maximum circumferential stress criterion is used to predict the direction of propagation.
引用
收藏
页码:540 / 551
页数:12
相关论文
共 29 条
[1]   Strain smoothing in FEM and XFEM [J].
Bordas, Stephane P. A. ;
Rabczuk, Timon ;
Nguyen-Xuan, Hung ;
Nguyen, Vinh Phu ;
Natarajan, Sundararajan ;
Bog, Tino ;
Do Minh Quan ;
Nguyen Vinh Hiep .
COMPUTERS & STRUCTURES, 2010, 88 (23-24) :1419-1443
[2]   A NUMERICAL-METHOD FOR SOLVING PARTIAL-DIFFERENTIAL EQUATIONS ON HIGHLY IRREGULAR EVOLVING GRIDS [J].
BRAUN, J ;
SAMBRIDGE, M .
NATURE, 1995, 376 (6542) :655-660
[3]  
Chen JS, 2001, INT J NUMER METH ENG, V50, P435, DOI 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO
[4]  
2-A
[5]   An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics [J].
Dai, K. Y. ;
Liu, G. R. ;
Nguyen, T. T. .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2007, 43 (11-12) :847-860
[6]   A virtual work derivation of the scaled boundary finite-element method for elastostatics [J].
Deeks, AJ ;
Wolf, JP .
COMPUTATIONAL MECHANICS, 2002, 28 (06) :489-504
[7]   Linear smoothed polygonal and polyhedral finite elements [J].
Francis, Amrita ;
Ortiz-Bernardin, Alejandro ;
Bordas, Stephane P. A. ;
Natarajan, Sundararajan .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (09) :1263-1288
[8]   T-spline based XIGA for fracture analysis of orthotropic media [J].
Ghorashi, S. Sh. ;
Valizadeh, N. ;
Mohammadi, S. ;
Rabczuk, T. .
COMPUTERS & STRUCTURES, 2015, 147 :138-146
[9]   Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions [J].
Hamdia, Khader M. ;
Silani, Mohammad ;
Zhuang, Xiaoying ;
He, Pengfei ;
Rabczuk, Timon .
INTERNATIONAL JOURNAL OF FRACTURE, 2017, 206 (02) :215-227
[10]   Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement [J].
Hughes, TJR ;
Cottrell, JA ;
Bazilevs, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (39-41) :4135-4195