Monte-Carlo Tree Search for the Maximum Satisfiability Problem

被引:6
|
作者
Goffinet, Jack [1 ]
Ramanujan, Raghuram [1 ]
机构
[1] Davidson Coll, Dept Math & Comp Sci, Davidson, NC 28035 USA
关键词
LOCAL SEARCH;
D O I
10.1007/978-3-319-44953-1_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incomplete algorithms for the Maximum Satisfiability (MaxSAT) problem use a hill climbing approach in tandem with various mechanisms that prevent search stagnation. These solvers' conflicting goals of maintaining search mobility while discovering high quality solutions constitute an exploration-exploitation dilemma, a problem which has been tackled with great success in recent years using Monte-Carlo Tree Search (MCTS) methods. We apply MCTS to the domain of MaxSAT using various stochastic local search (SLS) algorithms for leaf node value estimation, thus offering a novel hybrid alternative to established complete and incomplete solution techniques. Our algorithm outperforms baseline SLS algorithms like Walksat and Novelty on most problem instances from the 2015 MaxSAT Evaluation. It also outdoes CCLS, a state-of-the-art incomplete MaxSAT solver, on a number of challenging industrial instances from the 2015 MaxSAT Evaluation.
引用
收藏
页码:251 / 267
页数:17
相关论文
共 50 条
  • [41] Backpropagation Modification in Monte-Carlo Game Tree Search
    Xie, Fan
    Liu, Zhiqing
    2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL 2, PROCEEDINGS, 2009, : 125 - 128
  • [42] Monte-Carlo Tree Search in Dragline Operation Planning
    Liu, Haoquan
    Austin, Kevin
    Forbes, Michael
    Kearney, Michael
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (01): : 419 - 425
  • [43] Single-Player Monte-Carlo Tree Search
    Schadd, Maarten P. D.
    Winands, Mark H. M.
    van den Herik, H. Jaap
    Chaslot, Guillaume M. J. -B.
    Uiterwijk, Jos W. H. M.
    COMPUTERS AND GAMES, 2008, 5131 : 1 - +
  • [44] Hybrid fleet capacitated vehicle routing problem with flexible Monte-Carlo Tree search
    Barletta, Carmen
    Garn, Wolfgang
    Turner, Christopher
    Fallah, Saber
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE-OPERATIONS & LOGISTICS, 2023, 10 (01)
  • [45] Combining Monte-Carlo Tree Search with Proof-Number Search
    Doe, Elliot
    Winands, Mark H. M.
    Soemers, Dennis J. N. J.
    Browne, Cameron
    2022 IEEE CONFERENCE ON GAMES, COG, 2022, : 206 - 212
  • [46] Efficiency of Static Knowledge Bias in Monte-Carlo Tree Search
    Ikeda, Kokolo
    Viennot, Simon
    COMPUTERS AND GAMES, CG 2013, 2014, 8427 : 26 - 38
  • [47] Monte-Carlo Tree Search for the Game of "7Wonders"
    Robilliard, Denis
    Fonlupt, Cyril
    Teytaud, Fabien
    COMPUTER GAMES, CGW 2014, 2014, 504 : 64 - 77
  • [48] Efficient selectivity and backup operators in Monte-Carlo tree search
    Coulom, Remi
    COMPUTERS AND GAMES, 2007, 4630 : 72 - 83
  • [49] Monte-Carlo tree search for stable structures of planar clusters
    He Chang-Chun
    Liao Ji-Hai
    Yang Xiao-Bao
    ACTA PHYSICA SINICA, 2017, 66 (16)
  • [50] αβ-based Play-outs in Monte-Carlo Tree Search
    Winands, Mark H. M.
    Bjornsson, Yngvi
    2011 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2011, : 110 - 117