Monte-Carlo Tree Search for the Maximum Satisfiability Problem

被引:6
|
作者
Goffinet, Jack [1 ]
Ramanujan, Raghuram [1 ]
机构
[1] Davidson Coll, Dept Math & Comp Sci, Davidson, NC 28035 USA
关键词
LOCAL SEARCH;
D O I
10.1007/978-3-319-44953-1_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incomplete algorithms for the Maximum Satisfiability (MaxSAT) problem use a hill climbing approach in tandem with various mechanisms that prevent search stagnation. These solvers' conflicting goals of maintaining search mobility while discovering high quality solutions constitute an exploration-exploitation dilemma, a problem which has been tackled with great success in recent years using Monte-Carlo Tree Search (MCTS) methods. We apply MCTS to the domain of MaxSAT using various stochastic local search (SLS) algorithms for leaf node value estimation, thus offering a novel hybrid alternative to established complete and incomplete solution techniques. Our algorithm outperforms baseline SLS algorithms like Walksat and Novelty on most problem instances from the 2015 MaxSAT Evaluation. It also outdoes CCLS, a state-of-the-art incomplete MaxSAT solver, on a number of challenging industrial instances from the 2015 MaxSAT Evaluation.
引用
收藏
页码:251 / 267
页数:17
相关论文
共 50 条
  • [31] Can Monte-Carlo Tree Search learn to sacrifice?
    Companez, Nathan
    Aleti, Aldeida
    JOURNAL OF HEURISTICS, 2016, 22 (06) : 783 - 813
  • [32] Bayesian Optimization for Backpropagation in Monte-Carlo Tree Search
    Lim, Nengli
    Li, Yueqin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT II, 2021, 12892 : 209 - 221
  • [33] Monte-Carlo Tree Search for the Game of Scotland Yard
    Nijssen, J. A. M.
    Winands, Mark H. M.
    2011 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2011, : 158 - 165
  • [34] Monte-Carlo Tree Search by Best Arm Identification
    Kaufmann, Emilie
    Koolen, Wouter M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [35] Monte-Carlo Tree Search for Scalable Coalition Formation
    Wu, Feng
    Ramchurn, Sarvapali D.
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 407 - 413
  • [36] EXPERIMENTS WITH MONTE-CARLO TREE SEARCH IN THE GAME OF HAVANNAH
    Lorentz, Richard J.
    ICGA JOURNAL, 2011, 34 (03) : 140 - 149
  • [37] Monte-Carlo tree search as regularized policy optimization
    Grill, Jean-Bastien
    Altche, Florent
    Tang, Yunhao
    Hubert, Thomas
    Valko, Michal
    Antonoglou, Ioannis
    Munos, Remi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [38] Monte-Carlo tree search for Bayesian reinforcement learning
    Ngo Anh Vien
    Ertel, Wolfgang
    Viet-Hung Dang
    Chung, TaeChoong
    APPLIED INTELLIGENCE, 2013, 39 (02) : 345 - 353
  • [39] Monte-Carlo tree search for Bayesian reinforcement learning
    Ngo Anh Vien
    Wolfgang Ertel
    Viet-Hung Dang
    TaeChoong Chung
    Applied Intelligence, 2013, 39 : 345 - 353
  • [40] Using evaluation functions in Monte-Carlo Tree Search
    Lorentz, Richard
    THEORETICAL COMPUTER SCIENCE, 2016, 644 : 106 - 113