Monte-Carlo Tree Search for the Maximum Satisfiability Problem

被引:6
|
作者
Goffinet, Jack [1 ]
Ramanujan, Raghuram [1 ]
机构
[1] Davidson Coll, Dept Math & Comp Sci, Davidson, NC 28035 USA
关键词
LOCAL SEARCH;
D O I
10.1007/978-3-319-44953-1_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incomplete algorithms for the Maximum Satisfiability (MaxSAT) problem use a hill climbing approach in tandem with various mechanisms that prevent search stagnation. These solvers' conflicting goals of maintaining search mobility while discovering high quality solutions constitute an exploration-exploitation dilemma, a problem which has been tackled with great success in recent years using Monte-Carlo Tree Search (MCTS) methods. We apply MCTS to the domain of MaxSAT using various stochastic local search (SLS) algorithms for leaf node value estimation, thus offering a novel hybrid alternative to established complete and incomplete solution techniques. Our algorithm outperforms baseline SLS algorithms like Walksat and Novelty on most problem instances from the 2015 MaxSAT Evaluation. It also outdoes CCLS, a state-of-the-art incomplete MaxSAT solver, on a number of challenging industrial instances from the 2015 MaxSAT Evaluation.
引用
收藏
页码:251 / 267
页数:17
相关论文
共 50 条
  • [21] Generalized Mean Estimation in Monte-Carlo Tree Search
    Dam, Tuan
    Klink, Pascal
    D'Eramo, Carlo
    Peters, Jan
    Pajarinen, Joni
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2397 - 2404
  • [22] Monte-Carlo tree search as regularized policy optimization
    Grill, Jean-Bastien
    Altche, Florent
    Tang, Yunhao
    Hubert, Thomas
    Valko, Michal
    Antonoglou, Ioannis
    Munos, Remi
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [23] Converging to a Player Model In Monte-Carlo Tree Search
    Sarratt, Trevor
    Pynadath, David V.
    Jhala, Arnav
    2014 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2014,
  • [24] AIs for Dominion Using Monte-Carlo Tree Search
    Tollisen, Robin
    Jansen, Jon Vegard
    Goodwin, Morten
    Glimsdal, Sondre
    CURRENT APPROACHES IN APPLIED ARTIFICIAL INTELLIGENCE, 2015, 9101 : 43 - 52
  • [25] Parallel Monte-Carlo Tree Search with Simulation Servers
    Kato, Hideki
    Takeuchi, Ikuo
    INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2010), 2010, : 491 - 498
  • [26] A SHOGI PROGRAM BASED ON MONTE-CARLO TREE SEARCH
    Sato, Yoshikuni
    Takahashi, Daisuke
    Grimbergen, Reijer
    ICGA JOURNAL, 2010, 33 (02) : 80 - 92
  • [27] CROSS-ENTROPY FOR MONTE-CARLO TREE SEARCH
    Chaslot, Guillaume M. J. B.
    Winands, Mark H. M.
    Szita, Istvan
    van den Herik, H. Jaap
    ICGA JOURNAL, 2008, 31 (03) : 145 - 156
  • [28] Monte-Carlo Tree Search Parallelisation for Computer Go
    van Niekerk, Francois
    Kroon, Steve
    van Rooyen, Gert-Jan
    Inggs, Cornelia P.
    PROCEEDINGS OF THE SOUTH AFRICAN INSTITUTE FOR COMPUTER SCIENTISTS AND INFORMATION TECHNOLOGISTS CONFERENCE, 2012, : 129 - 138
  • [29] Can Monte-Carlo Tree Search learn to sacrifice?
    Nathan Companez
    Aldeida Aleti
    Journal of Heuristics, 2016, 22 : 783 - 813
  • [30] Parallel Monte-Carlo Tree Search for HPC Systems
    Graf, Tobias
    Lorenz, Ulf
    Platzner, Marco
    Schaefers, Lars
    EURO-PAR 2011 PARALLEL PROCESSING, PT 2, 2011, 6853 : 365 - 376