Monte-Carlo Tree Search for the Maximum Satisfiability Problem

被引:6
|
作者
Goffinet, Jack [1 ]
Ramanujan, Raghuram [1 ]
机构
[1] Davidson Coll, Dept Math & Comp Sci, Davidson, NC 28035 USA
关键词
LOCAL SEARCH;
D O I
10.1007/978-3-319-44953-1_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incomplete algorithms for the Maximum Satisfiability (MaxSAT) problem use a hill climbing approach in tandem with various mechanisms that prevent search stagnation. These solvers' conflicting goals of maintaining search mobility while discovering high quality solutions constitute an exploration-exploitation dilemma, a problem which has been tackled with great success in recent years using Monte-Carlo Tree Search (MCTS) methods. We apply MCTS to the domain of MaxSAT using various stochastic local search (SLS) algorithms for leaf node value estimation, thus offering a novel hybrid alternative to established complete and incomplete solution techniques. Our algorithm outperforms baseline SLS algorithms like Walksat and Novelty on most problem instances from the 2015 MaxSAT Evaluation. It also outdoes CCLS, a state-of-the-art incomplete MaxSAT solver, on a number of challenging industrial instances from the 2015 MaxSAT Evaluation.
引用
收藏
页码:251 / 267
页数:17
相关论文
共 50 条
  • [11] PROGRESSIVE STRATEGIES FOR MONTE-CARLO TREE SEARCH
    Chaslot, Guillaume M. J-B.
    Winands, Mark H. M.
    Van den Herik, H. Jaap
    Uiterwijk, Jos W. H. M.
    Bouzy, Bruno
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2008, 4 (03) : 343 - 357
  • [12] A Parallel Monte-Carlo Tree Search Algorithm
    Cazenave, Tristan
    Jouandeau, Nicolas
    COMPUTERS AND GAMES, 2008, 5131 : 72 - 80
  • [13] LinUCB Applied to Monte-Carlo Tree Search
    Mandai, Yusaku
    Kaneko, Tomoyuki
    ADVANCES IN COMPUTER GAMES, ACG 2015, 2015, 9525 : 41 - 52
  • [14] Score Bounded Monte-Carlo Tree Search
    Cazenave, Tristan
    Saffidine, Abdallah
    COMPUTERS AND GAMES, 2011, 6515 : 93 - 104
  • [15] Improving Monte-Carlo Tree Search in Havannah
    Lorentz, Richard J.
    COMPUTERS AND GAMES, 2011, 6515 : 105 - 115
  • [16] Split Moves for Monte-Carlo Tree Search
    Kowalski, Jakub
    Mika, Maksymilian
    Pawlik, Wojciech
    Sutowicz, Jakub
    Szykula, Marek
    Winands, Mark H. M.
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 10247 - 10255
  • [17] Convex Regularization in Monte-Carlo Tree Search
    Dam, Tuan
    D'Eramo, Carlo
    Peters, Jan
    Pajarinen, Joni
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [18] The Multiple Uses of Monte-Carlo Tree Search
    Senington, Richard
    SPS 2022, 2022, 21 : 713 - 724
  • [19] Multiple Tree for Partially Observable Monte-Carlo Tree Search
    Auger, David
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, PT I, 2011, 6624 : 53 - 62
  • [20] Automated Machine Learning with Monte-Carlo Tree Search
    Rakotoarison, Herilalaina
    Schoenauer, Marc
    Sebag, Michele
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3296 - 3303