Monte-Carlo Tree Search for the Maximum Satisfiability Problem

被引:6
|
作者
Goffinet, Jack [1 ]
Ramanujan, Raghuram [1 ]
机构
[1] Davidson Coll, Dept Math & Comp Sci, Davidson, NC 28035 USA
关键词
LOCAL SEARCH;
D O I
10.1007/978-3-319-44953-1_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incomplete algorithms for the Maximum Satisfiability (MaxSAT) problem use a hill climbing approach in tandem with various mechanisms that prevent search stagnation. These solvers' conflicting goals of maintaining search mobility while discovering high quality solutions constitute an exploration-exploitation dilemma, a problem which has been tackled with great success in recent years using Monte-Carlo Tree Search (MCTS) methods. We apply MCTS to the domain of MaxSAT using various stochastic local search (SLS) algorithms for leaf node value estimation, thus offering a novel hybrid alternative to established complete and incomplete solution techniques. Our algorithm outperforms baseline SLS algorithms like Walksat and Novelty on most problem instances from the 2015 MaxSAT Evaluation. It also outdoes CCLS, a state-of-the-art incomplete MaxSAT solver, on a number of challenging industrial instances from the 2015 MaxSAT Evaluation.
引用
收藏
页码:251 / 267
页数:17
相关论文
共 50 条
  • [1] Monte-Carlo Style UCT Search for Boolean Satisfiability
    Previti, Alessandro
    Ramanujan, Raghuram
    Schaerf, Marco
    Selman, Bart
    AI(STAR)IA 2011: ARTIFICIAL INTELLIGENCE AROUND MAN AND BEYOND, 2011, 6934 : 177 - +
  • [2] Monte-Carlo Tree Search for Logistics
    Edelkamp, Stefan
    Gath, Max
    Greulich, Christoph
    Humann, Malte
    Herzog, Otthein
    Lawo, Michael
    COMMERCIAL TRANSPORT, 2016, : 427 - 440
  • [3] Monte-Carlo Tree Search Solver
    Winands, Mark H. M.
    Bjornsson, Yngvi
    Saito, Jahn-Takeshi
    COMPUTERS AND GAMES, 2008, 5131 : 25 - +
  • [4] Parallel Monte-Carlo Tree Search
    Chaslot, Guillaume M. J. -B.
    Winands, Mark H. M.
    van den Herik, H. Jaap
    COMPUTERS AND GAMES, 2008, 5131 : 60 - +
  • [5] Monte-Carlo Tree Search with Tree Shape Control
    Marchenko, Oleksandr I.
    Marchenko, Oleksii O.
    2017 IEEE FIRST UKRAINE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (UKRCON), 2017, : 812 - 817
  • [6] Monte-Carlo Tree Search for Constrained POMDPs
    Lee, Jongmin
    Kim, Geon-Hyeong
    Poupart, Pascal
    Kim, Kee-Eung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [7] Monte-Carlo Tree Search: To MC or to DP?
    Feldman, Zohar
    Domshlak, Carmel
    21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 321 - 326
  • [8] Monte-Carlo Tree Search in Settlers of Catan
    Szita, Istvan
    Chaslot, Guillaume
    Spronck, Pieter
    ADVANCES IN COMPUTER GAMES, 2010, 6048 : 21 - +
  • [9] Monte-Carlo Tree Search for Policy Optimization
    Ma, Xiaobai
    Driggs-Campbell, Katherine
    Zhang, Zongzhang
    Kochenderfer, Mykel J.
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3116 - 3122
  • [10] Scalability and Parallelization of Monte-Carlo Tree Search
    Bourki, Amine
    Chaslot, Guillaume
    Coulm, Matthieu
    Danjean, Vincent
    Doghmen, Hassen
    Hoock, Jean-Baptiste
    Herault, Thomas
    Rimmel, Arpad
    Teytaud, Fabien
    Teytaud, Olivier
    Vayssiere, Paul
    Yu, Ziqin
    COMPUTERS AND GAMES, 2011, 6515 : 48 - 58