A note on stability of polynomial equations

被引:5
作者
Brzdek, Janusz [1 ]
Stevic, Stevo [2 ]
机构
[1] Pedag Univ, Dept Math, PL-30084 Krakow, Poland
[2] Serbian Acad Sci, Math Inst, Beograd 11000, Serbia
关键词
Hyers-Ulam stability; fixed point; polynomial type equation; Banach algebra; HYERS-ULAM STABILITY; FIXED-POINT APPROACH; FUNCTIONAL-EQUATIONS; LINEAR RECURRENCE;
D O I
10.1007/s00010-012-0146-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the notion of Ulam's type stability and some recent results of S.-M. Jung, concerning the stability of zeros of polynomials, we prove a stability result for functional equations that have polynomial forms, considerably improving the results in the literature.
引用
收藏
页码:519 / 527
页数:9
相关论文
共 17 条
[1]   Stability of functional equations in single variable [J].
Agarwal, RP ;
Xu, B ;
Zhang, WN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (02) :852-869
[2]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[3]   Hyers-Ulam stability of derivations and linear functions [J].
Boros, Zoltan ;
Gselmann, Eszter .
AEQUATIONES MATHEMATICAE, 2010, 80 (1-2) :13-25
[4]   Hyers-ulam stability for linear equations of higher orders [J].
Brzdek, J. ;
Popa, D. ;
Xu, B. .
ACTA MATHEMATICA HUNGARICA, 2008, 120 (1-2) :1-8
[5]   Note on nonstability of the linear recurrence [J].
Brzdek, J. ;
Popa, D. ;
Xu, B. .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2006, 76 (1) :183-189
[6]   A fixed point approach to the stability of functional equations in non-Archimedean metric spaces [J].
BrzdeK, Janusz ;
Cieplinski, Krzysztof .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) :6861-6867
[7]   A fixed point approach to stability of functional equations [J].
Brzdek, Janusz ;
Chudziak, Jacek ;
Pales, Zsolt .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6728-6732
[8]   On approximate solutions of the linear functional equation of higher order [J].
Brzdek, Janusz ;
Popa, Dorian ;
Xu, Bing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :680-689
[9]   Fixed point methods for the generalized stability of functional equations in a single variable [J].
Cadariu, Liviu ;
Radu, Viorel .
FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
[10]   Elementary remarks on Ulam-Hyers stability of linear functional equations [J].
Forti, Gian-Luigi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :109-118