SUPERVISED CLASSIFICATION USING POLARIMETRIC SAR DECOMPOSITION PARAMETERS TO DETECT ANOMALIES ON EARTHEN LEVEES

被引:0
|
作者
Marapareddy, Ramakalavathi [1 ]
Aanstoos, James V. [2 ]
Younan, Nicolas H. [3 ]
Bruce, Lori M. [4 ]
机构
[1] Mississippi State Univ, Ctr Adv Vehicular Syst, Mississippi State, MS 39759 USA
[2] Mississippi State Univ, Geosyst Res Inst, Mississippi State, MS 39759 USA
[3] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
[4] Mississippi State Univ, Grad Sch, Mississippi State, MS 39762 USA
来源
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2016年
基金
美国国家科学基金会;
关键词
SAR; Earthen Levees; UAVSAR; Classification; Polarimetry;
D O I
10.1109/IGARSS.2016.7729249
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Earthen levees protect large areas of populated and cultivated land from flooding. The potential loss of life and property associated with the catastrophic failure of levees can be great. One type of problem that occurs along these levees which can lead to complete failure during a high water event is slough slides [1]. Using Entropy (H), Anisotropy (A), and alpha (a) parameters, we implemented Wishart supervised classification method for the identification of anomalies on the levee. The effectiveness of the algorithms is demonstrated using quad-polarimetric L-band polarimetric Synthetic Aperture Radar (polSAR) imagery from the NASA Jet Propulsion Laboratory's (JPL's) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower Mississippi River valley in the southern USA.
引用
收藏
页码:983 / 986
页数:4
相关论文
共 50 条
  • [1] Advanced Unsupervised Classification Methods to Detect Anomalies on Earthen Levees Using Polarimetric SAR Imagery
    Marapareddy, Ramakalavathi
    Aanstoos, James V.
    Younan, Nicolas H.
    SENSORS, 2016, 16 (06):
  • [2] AN INNOVATIVE APPROACH TO DETECT ANOMALIES ON EARTHEN LEVEES USING UNSUPERVISED CLASSIFICATION OF POLARIMETRIC SAR IMAGERY
    Marapareddy, Ramakalavathi
    Aanstoos, James V.
    Younan, Nicolas H.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 381 - 384
  • [3] CLASSIFICATION OF POLARIMETRIC SAR IMAGERY USING UNSUPERVISED H/α AND EXTENDED H/α SCHEMES TO DETECT ANOMALIES ON EARTHEN LEVEES
    Marapareddy, Ramakalavathi
    Aanstoos, James V.
    Younan, Nicolas H.
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 601 - 605
  • [4] Detection of Slump Slides on Earthen Levees Using Polarimetric SAR Imagery
    Aanstoos, James V.
    Hasan, Khaled
    O'Hara, Charles G.
    Dabbiru, Lalitha
    Mahrooghy, Majid
    Nobrega, Rodrigo
    Lee, Matthew A.
    2012 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2012,
  • [5] Using similarity parameters for supervised polarimetric SAR image classification
    Xu, JY
    Yang, J
    Peng, YN
    Wang, C
    Liou, YA
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2002, E85B (12) : 2934 - 2942
  • [6] COMPARISON OF L-BAND AND X-BAND POLARIMETRIC SAR DATA CLASSIFICATION FOR SCREENING EARTHEN LEVEES
    Dabbiru, Lalitha
    Aanstoos, James V.
    Younan, Nicolas H.
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [7] Supervised Feature Selection for Polarimetric SAR Classification
    Bai, Yu
    Peng, Dongqing
    Yang, Xiangli
    Chen, Lijun
    Yang, Wen
    2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 1006 - 1010
  • [8] SUPERVISED CLASSIFICATION OF POLARIMETRIC SAR IMAGERY USING TEMPORAL AND CONTEXTUAL INFORMATION
    Dargahi, A.
    Maghsoudi, Y.
    Abkar, A. A.
    SMPR CONFERENCE 2013, 2013, 40-1-W3 : 107 - 110
  • [9] A study of land cover classification using polarimetric SAR parameters
    Alberga, V.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (17) : 3851 - 3870
  • [10] MULTI-BAND SUPERVISED CLASSIFICATION FOR POLARIMETRIC SAR
    Dupuis, Xavier
    Wasik, Valentine
    Alakian, Alexandre
    Dubucq, Dominique
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5772 - 5775