Is trivial dynamics that trivial?

被引:5
作者
Blaya, AB [1 ]
López, VJ [1 ]
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
关键词
D O I
10.2307/27641863
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:109 / 133
页数:25
相关论文
共 47 条
[1]  
[Anonymous], ITERATED MAPS INTERV
[2]   A simple special case of Sharkovskii's theorem [J].
Barton, R ;
Burns, K .
AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (10) :932-933
[3]  
BLOCK LS, 1992, LECT NOTES MATH, V1513, pUR3
[4]   NONEXISTENCE OF WANDERING INTERVALS AND STRUCTURE OF TOPOLOGICAL ATTRACTORS OF ONE DIMENSIONAL DYNAMICAL-SYSTEMS .2. THE SMOOTH CASE [J].
BLOKH, AM ;
LYUBICH, MY .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :751-758
[5]  
Coppel W.A., 1955, Proc. Cambridge Philos. Soc., V51, P41
[6]   CONTINUOUS-MAPS OF THE INTERVAL WHOSE PERIODIC POINTS FORM A CLOSED SET [J].
COVEN, EM ;
HEDLUND, GA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 79 (01) :127-133
[7]   THE ROLE OF TRANSITIVITY IN DEVANEYS DEFINITION OF CHAOS [J].
CRANNELL, A .
AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (09) :788-793
[8]  
de Melo W., 1993, ONE DIMENSIONAL DYNA
[9]   A simple proof of Sharkovsky's theorem [J].
Du, BS .
AMERICAN MATHEMATICAL MONTHLY, 2004, 111 (07) :595-599
[10]   On a converse of Sharkovsky's Theorem [J].
Elaydi, S .
AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (05) :386-392