Preparation and properties of poly(ε-caprolactone) self-reinforced composites based on fibers/matrix structure

被引:6
|
作者
Han, Lei [1 ]
Xu, Hong [1 ]
Sui, Xiaofeng [1 ]
Zhang, Linping [1 ]
Zhong, Yi [1 ]
Mao, Zhiping [1 ]
机构
[1] Donghua Univ, Coll Chem Chem Engn & Biotechnol, Minist Educ, Key Lab Sci & Technol Ecotext, Shanghai 201620, Peoples R China
关键词
biomaterials; differential scanning calorimetry; manufacturing; mechanical properties; molding; 2-DIMENSIONAL MULTIFIBER MICROCOMPOSITES; MECHANICAL-PROPERTIES; MULTIBLOCK COPOLYMERS; STRESS-CONCENTRATIONS; POLYMER COMPOSITES; FAILURE PHENOMENA; FIBER; BONE; BIOCOMPOSITES; POLYETHYLENE;
D O I
10.1002/app.44673
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Self-reinforced poly(epsilon-caprolactone) (PCL) composites were prepared from bi-component PCL yarns composed of PCL drawn fibers and PCL matrix by a combined process of yarns winding and hot-pressing. Series of PCL polymers with different melting points were synthesized and used as matrix. PCL melt-spun fibers were subject to different draw ratios and functioned as reinforcement. During the process of hot-pressing, the matrix with low melting points melted and bonded the unmelted drawn fibers together creating self-reinforced composites, the morphologies of which were examined by scanning electron microscope. Tensile testing of the composites was performed along the longitudinal and transverse directions separately. The longitudinal tensile test results showed that the Young's modulus and strength at break of the self-reinforced composites were 59% and 250% higher than that of pure PCL. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Preparation and properties of nano-silica filled self-reinforced polypropylene
    Ruan, Wen Hong
    Zhang, Ming Qiu
    Wang, Ming Hui
    Rong, Min Zhi
    Barany, Thomas
    Czigany, Tibor
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES, PTS 1 AND 2, 2008, 47-50 : 318 - +
  • [42] Penetration impact testing of self-reinforced composites
    Meerten, Y.
    Swolfs, Y.
    Baets, J.
    Gorbatikh, L.
    Verpoest, I.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2015, 68 : 289 - 295
  • [43] Commercial self-reinforced composites: A comparative study
    Santos, Rafael A. M.
    Gorbatikh, Larissa
    Swolfs, Yentl
    COMPOSITES PART B-ENGINEERING, 2021, 223
  • [44] Structural description of self-reinforced polypropylene composites
    Ries, Angela
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (41)
  • [45] Self-reinforced melt processable composites of sisal
    Lu, X
    Zhang, MQ
    Rong, MZ
    Shi, G
    Yang, GC
    COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (02) : 177 - 186
  • [46] Technology and Development of Self-Reinforced Polymer Composites
    Alcock, Ben
    Peijs, Ton
    POLYMER COMPOSITES - POLYOLEFIN FRACTIONATION - POLYMERIC PEPTIDOMIMETICS - COLLAGENS, 2013, 251 : 1 - 76
  • [47] High performance self-reinforced polypropylene composites
    Barany, Tamas
    Izer, Andras
    Czigany, Tibor
    MATERIALS SCIENCE, TESTING AND INFORMATICS III, 2007, 537-538 : 121 - +
  • [48] Effect of selected smectites on some properties of poly(ε-caprolactone)-matrix composites
    Zenkiewicz, Marian
    Richert, Jozef
    Rytlewski, Piotr
    PRZEMYSL CHEMICZNY, 2013, 92 (02): : 255 - 259
  • [49] Application of Melt-Blown Poly(lactic acid) Fibres in Self-Reinforced Composites
    Vadas, Daniel
    Kmetyko, David
    Marosi, Gyorgy
    Bocz, Katalin
    POLYMERS, 2018, 10 (07)
  • [50] Self-reinforced composites of various polyesters with PET/HBA based LCP
    Song, C.H.
    Isayev, A.I.
    Journal of Polymer Engineering, 2000, 20 (06): : 427 - 457