A DOUBLE EIGENVALUE PROBLEM FOR SCHRODINGER EQUATIONS INVOLVING SUBLINEAR NONLINEARITIES AT

被引:0
作者
Kristaly, Alexandru [1 ]
机构
[1] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
关键词
Schrodinger equation; sublinearity at infinity; eigenvalue problem;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some multiplicity results concerning parameterized Schrodinger type equations which involve nonlinearities with sublinear growth at infinity. Some stability properties of solutions with respect to the parameters are also established in an appropriate Sobolev space.
引用
收藏
页数:11
相关论文
共 25 条
[11]  
Gazzola F., 2000, Differential Integral Equations, V13, P47
[12]   On a class of quasilinear eigenvalue problems in RN [J].
Kristály, A ;
Varga, C .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (15) :1756-1765
[13]   Multiplicity results for an eigenvalue problem for hemivariational inequalities in strip-like domains [J].
Kristály, A .
SET-VALUED ANALYSIS, 2005, 13 (01) :85-103
[14]   Existence of two nontrivial solutions for a class of elliptic eigenvalue problems [J].
Marano, SA ;
Motreanu, D .
ARCHIV DER MATHEMATIK, 2000, 75 (01) :53-58
[15]   On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems [J].
Marano, SA ;
Motreanu, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (01) :37-52
[16]   PRINCIPLE OF SYMMETRIC CRITICALITY [J].
PALAIS, RS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 69 (01) :19-30
[17]   Multiplicity results for some elliptic problems with concave nonlinearities [J].
Perera, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 140 (01) :133-141
[18]   ON A CLASS OF NONLINEAR SCHRODINGER-EQUATIONS [J].
RABINOWITZ, PH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (02) :270-291
[19]   Existence of three solutions for a class of elliptic eigenvalue problems [J].
Ricceri, B .
MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (11-13) :1485-1494
[20]   On a three critical points theorem [J].
Ricceri, B .
ARCHIV DER MATHEMATIK, 2000, 75 (03) :220-226