Genome-Wide Identification of Dicer-Like, Argonaute, and RNA-Dependent RNA Polymerase Gene Families in Brassica Species and Functional Analyses of Their Arabidopsis Homologs in Resistance to Sclerotinia sclerotiorum

被引:51
作者
Cao, Jia-Yi [1 ]
Xu, You-Ping [2 ]
Li, Wen [1 ]
Li, Shuang-Sheng [1 ]
Rahman, Hafizur [1 ]
Cai, Xin-Zhong [1 ]
机构
[1] Zhejiang Univ, Coll Agr & Biotechnol, Inst Biotechnol, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ctr Anal & Measurement, Hangzhou, Zhejiang, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2016年 / 7卷
基金
中国国家自然科学基金;
关键词
Brassica napus; RNA silencing; Dicer-like (DCL); Argonaute (AGO); RNA-dependent RNA polymerase (RDR); Scierotinia sclerotiorum; CAMTA3; BINDING TRANSCRIPTION FACTOR; NAPUS; INTERFERENCE; SUPPRESSION; MICRORNAS; PROTEINS; IMMUNITY; DEFENSE; PATHWAY; BIOGENESIS;
D O I
10.3389/fpls.2016.01614
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
RNA silencing is an important mechanism to regulate gene expression and antiviral defense in plants. Nevertheless, RNA silencing machinery in the important oil crop Brassica napus and function in resistance to the devastating fungal pathogen Sclerotinia sclerotiorum are not well-understood. In this study, gene families of RNA silencing machinery in B. napus were identified and their role in resistance to S. sclerotiorum was revealed. Genome of the allopolyploid species B. napus possessed 8 Dicer-like (DCL), 27 Argonaute (AGO), and 16 RNA-dependent RNA polymerase (RDR) genes, which included almost all copies from its progenitor species B. rapa and B. oleracea and three extra copies of RDR5 genes, indicating that the RDR5 group in B. napus appears to have undergone further expansion through duplication during evolution. Moreover, compared with Arabidopsis, some AGO and RDR genes such as AGO1, AGO4, AGO9, and RDR5 had significantly expanded in these Brassica species. Twenty-one out of 51 DCL, AGO, and RDR genes were predicted to contain calmodulin-binding transcription activators (CAMTA)-binding site (CGCG box). S. sclerotiorum inoculation strongly induced the expression of BnCAMTA3 genes while significantly suppressed that of some CGCG-containing RNA silencing component genes, suggesting that RNA silencing machinery might be targeted by CAMTA3. Furthermore, Arabidopsis mutant analyses demonstrated that dc/4-2, ago9-1, rdr1-1, rdr6-11, and rdr6-15 mutants were more susceptible to S. sclerotiorum, while doll-9 was more resistant. Our results reveal the importance of RNA silencing in plant resistance to S. sclerotiorum and imply a new mechanism of CAMTA function as well as RNA silencing regulation.
引用
收藏
页数:17
相关论文
共 68 条
[1]   ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis [J].
Agorio, Astrid ;
Vera, Pablo .
PLANT CELL, 2007, 19 (11) :3778-3790
[2]   Genome-wide identification of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stresses in Solanum lycopersicum [J].
Bai, Miao ;
Yang, Guo-Shun ;
Chen, Wen-Ting ;
Mao, Zhen-Chuan ;
Kang, Hou-Xiang ;
Chen, Guo-Hua ;
Yang, Yu-Hong ;
Xie, Bing-Yan .
GENE, 2012, 501 (01) :52-62
[3]   RNA silencing in plants [J].
Baulcombe, D .
NATURE, 2004, 431 (7006) :356-363
[4]   THE FOCUSING POSITIONS OF POLYPEPTIDES IN IMMOBILIZED PH GRADIENTS CAN BE PREDICTED FROM THEIR AMINO-ACID-SEQUENCES [J].
BJELLQVIST, B ;
HUGHES, GJ ;
PASQUALI, C ;
PAQUET, N ;
RAVIER, F ;
SANCHEZ, JC ;
FRUTIGER, S ;
HOCHSTRASSER, D .
ELECTROPHORESIS, 1993, 14 (10) :1023-1031
[5]   The Diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs in Arabidopsis [J].
Bologna, Nicolas G. ;
Voinnet, Olivier .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 65, 2014, 65 :473-503
[6]   Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level [J].
Cao, Jia-Yi ;
Xu, You-Ping ;
Zhao, Li ;
Li, Shuang-Sheng ;
Cai, Xin-Zhong .
PLANT MOLECULAR BIOLOGY, 2016, 92 (1-2) :39-55
[7]   RNase III enzymes and the initiation of gene silencing [J].
Carmell, MA ;
Hannon, GJ .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (03) :214-218
[8]   Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome [J].
Chalhoub, Boulos ;
Denoeud, France ;
Liu, Shengyi ;
Parkin, Isobel A. P. ;
Tang, Haibao ;
Wang, Xiyin ;
Chiquet, Julien ;
Belcram, Harry ;
Tong, Chaobo ;
Samans, Birgit ;
Correa, Margot ;
Da Silva, Corinne ;
Just, Jeremy ;
Falentin, Cyril ;
Koh, Chu Shin ;
Le Clainche, Isabelle ;
Bernard, Maria ;
Bento, Pascal ;
Noel, Benjamin ;
Labadie, Karine ;
Alberti, Adriana ;
Charles, Mathieu ;
Arnaud, Dominique ;
Guo, Hui ;
Daviaud, Christian ;
Alamery, Salman ;
Jabbari, Kamel ;
Zhao, Meixia ;
Edger, Patrick P. ;
Chelaifa, Houda ;
Tack, David ;
Lassalle, Gilles ;
Mestiri, Imen ;
Schnel, Nicolas ;
Le Paslier, Marie-Christine ;
Fan, Guangyi ;
Renault, Victor ;
Bayer, Philippe E. ;
Golicz, Agnieszka A. ;
Manoli, Sahana ;
Lee, Tae-Ho ;
Vinh Ha Dinh Thi ;
Chalabi, Smahane ;
Hu, Qiong ;
Fan, Chuchuan ;
Tollenaere, Reece ;
Lu, Yunhai ;
Battail, Christophe ;
Shen, Jinxiong ;
Sidebottom, Christine H. D. .
SCIENCE, 2014, 345 (6199) :950-953
[9]   Isolation of a calmodulin-binding transcription factor from rice (Oryza sativa L.) [J].
Choi, MS ;
Kim, MC ;
Yoo, JH ;
Moon, BC ;
Koo, SC ;
Park, BO ;
Lee, JH ;
Koo, YD ;
Han, HJ ;
Lee, SY ;
Chung, WS ;
Lim, CO ;
Cho, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (49) :40820-40831
[10]   viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence [J].
Csorba, Tibor ;
Kontra, Levente ;
Burgyan, Jozsef .
VIROLOGY, 2015, 479 :85-103