On the derivation of hydrodynamics from the Boltzmann equation

被引:21
作者
Esposito, R [1 ]
Lebowitz, JL
Marra, R
机构
[1] Univ Aquila, Dipartimento Matemat, I-67100 Laquila, Italy
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
[3] Rutgers State Univ, Dept Phys, New Brunswick, NJ 08903 USA
[4] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy
关键词
D O I
10.1063/1.870097
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We review the main ideas on the derivation of hydrodynamical equations from microscopic models. The Boltzmann equation, which is a good approximation for the evolution of rare gases, provides a useful tool to test these ideas in mathematically controllable situations such as the Euler and incompressible Navier-Stokes limits, which we describe in some detail. We also discuss the heuristics and some rigorous results available for stochastic particle systems. (C) 1999 American Institute of Physics. [S1070-6631(99)02008-5].
引用
收藏
页码:2354 / 2366
页数:13
相关论文
共 35 条
[1]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[2]  
BARDOS C, 1989, COMPTES RENDUS ACA 1, V11, P727
[3]  
BENOIS O, IN PRESS J STAT PHYS
[4]  
Bobylev A. V., 1982, Soviet Physics - Doklady, V27, P29
[5]  
BOLDRIGHINI C, 1980, TIME ASYMPTOTIC DEGE
[6]  
Boussinesq J., 1903, Theorie Analytique de la Chaleur, V2
[7]  
CAFLISCH R, 1983, FLUID DYNAMICS BOLTZ, P193
[8]   THE FLUID DYNAMIC LIMIT OF THE NON-LINEAR BOLTZMANN-EQUATION [J].
CAFLISCH, RE .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (05) :651-666
[9]  
Cercignani C, 1988, BOLTZMANN EQUATION I
[10]   INCOMPRESSIBLE NAVIER-STOKES AND EULER LIMITS OF THE BOLTZMANN-EQUATION [J].
DEMASI, A ;
ESPOSITO, R ;
LEBOWITZ, JL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (08) :1189-1214